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degree) in IT Engineering at University of Naples “Federico Il” in
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His research interests are mainly related to Computational
Intelligence and Intelligent Systems, focusing on how to apply
mathematical models and advanced algorithms to real-world
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software systems and solutions, using the state of art of
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(1999), Siemens ICN (2000-2001) and TotalFinaElf E&P Paris
(2001-2002).
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“Big Data is high-volume, high-velocity and high-variety information assets
that demand cost-effective, innovative forms of information processing for
enhanced insight and decision making.”

Gartner Research
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Some examples:

e The 1000 Genomes Project is aimed to find most genetic variants that
have frequencies of at least 1% in the populations studied. The genome of
each human being is 100 GB long.

e Jack Gallant at UC Berkeley was able to recover what people were seeing
by directly observing activity in their brains by using big data and
statistical methods.

e The Large Hadron Collider (LHC) at CERN in Switzerland started to take
data in 2009. The amount of data collected by CERN is about 25 PB a year.
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" Kamioka Kashiwa \
[ |

storage server

(calibration, %- (for analysis
DetChar) mass gueues)
storage
— )

pre-process Main ICRR’s data sharing
server(s) computers € > between LSC, Virgo

Tier 1T mirroring )
. Primary Archive = Tier O
Smmmm - for redundancy and
T safe of the full archive,
N offline processing with
] more computing
Tier 0.5 Low Tier 2 partial ) power, multi-
latency distribution > S 1 messenger astro.
1 A4
Osaka City U., Osaka U. ' Tier 2 partial
| o o %
ITler 0.5: mauﬂ signal and proc. data for low 'Yy Tier 2 partil
atency searches ((7Tier22.0r 37 distribution
Tier 1 : full data mirror

Tier 2 : proc. data

: _ Oversea KAGRA collaborater sites
Tier 3 : partial cache of proc. data

ICRR, University of Tokyo — May 23, 2014



e ——
—_— ~

\

1 Frame Data Structures (KAGRA

Instituie Tor Cosmic Ray Besohich

Yajversity of Tokyw
N— I
Figure 1: Schematic representation of data organization within a file.
Structures Filled by Frame Builder (real time, on-line)
[T T T T T TTTTTTT7T e
Frame Time & Duaton Sonment
rame History — “(NextFibistry
FILE MAKE-UP ety — P—
Event Data —|—
FILE HEADER (1 per file) st s —— R
Simuted Data. “(Next Frbeector
FRAME
CONTENTS FrSerData FrSerData
T OF SMS ;ame. SMS namas‘
ime, data bk me, data bl
END OF FILE (1 per flle)
‘(1st ADC)
FRAME MAKE-UP s FrADCData
Comment ‘Comment
FRAME HEADER (1 per frame) St a0 frok e
DICTIONARY*
DATA CLASSES Structures Filled by Off-line Post-Processing
FrEventData FrEventData
END OF FRAME (1 per frame) presm— pr—
STRUCTURE MAKE-UP oo Frwinioa) o Frwiniae)
FrProcData
m Sampling rate, f_offset,
phase, bufer 57,
DATACLASS st EprocDat)
TYPICAL STRUCTURE COUNTER FOR INSTANCE
OF CLASS IN FRAME
AQQGREQATE DATA
(VECTOR W/ VARIABLE TYPES)
param
* Dictionary structure behavior is unique in that: next FrSimpata)
1. It preceeds header for first frame of file;
2. Dictionary is built up incrementally as addititional
structures are incorporated into frame
3. It is valid for entire file (persistent)
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Column-oriented (a.k.a. vertical) databases store data with a focus on
columns, instead of rows, allowing for huge data compression and
very fast query times.

The downside to these databases is that they will generally only allow

batch updates, having a much slower update time than traditional
models.

row-store column-store

4
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e Column-oriented databases are suitable for read-mostly, read-intensive, large
data repositories

e OLAP, On-Line Analytical Processing
e Big Data Analytics

e Row-oriented (conventional) databases are more suitable for accessing/update
single transactions

e OLTP, On-Line Transaction Processing

e CRUD, Create/Read/Delete/Update activities

(+) Easy to add/modify a record (+) Only need to read in relevant data

(-) Might read in unnecessary data (-) Tuple writes require multiple accesses

e

x
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e Column-oriented databases make large use of the following
optimizations:

e Compression
e | ate Materialization
e Block Iteration

e |nvisible Join

e

.

ICRR, University of Tokyo — May 23, 2014
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e Low information entropy (high data value locality) leads to High
compression ratio

e |f data is sorted on one column that column will be super-

compressible in row store

e eg. Run Length Encoding

el[o]e]c]

(2]
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e As result of queries we expect records

e So at some point of time multiple column must be combined

e One simple approach is to join the columns relevant for a particular
query

e But further performance can be improve using late-materialization

¥
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e Delay Tuple Construction

e Might avoid constructing it altogether

e Intermediate position lists might need to be constructed

e Eg: SELECT R.a FROM R WHERE R.c =5 AND R.b =10

e Output of each predicate is a bit string
e Perform Bitwise AND

e Use final position list to extract R.a

¥

ICRR, University of Tokyo — May 23, 2014
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e Advantages
e Unnecessary construction of tuple is avoided
e Direct operation on compressed data

e Cache performance is improved

¥
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J

e Operators operate on blocks of
tuples at once

e |[terate over blocks rather than
tuples

\.

e Like batch processing

e |f column is fixed width, it can
be operated as an array

e Minimizes per-tuple overhead

e Exploits potential for
parallelism

LTI
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e |nvisible join is a late materialized join but minimize the values that
need to be extracted out of order

e |nvisible join

e Rewrite joins into predicates on the foreign key columns in the
fact table

e These predicates evaluated either by hash-lookup

e Or by between-predicate rewriting

¥
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ICRR, Invisible Join (KAEIER

SELECT c.nation, s.nation, d.year,
sum (lo.revenue) as revenue
FFROM customer AS ¢, lineorder AS lo,
supplier AS s, dwdate AS d

WHERE lo.custkey = c.custkey

AND lo.suppkey = s.suppkey

AND lo.orderdate = d.datekey

AND c.region = ASIA
.region = ASTA
.year >= 1992 and d.year <= 1997
Y c.nation, s.nation, d.year
ORDER BY d.year asc, revenue desc;

o
<
w,
W W n ¢

Find Total revenue from Asian customers who purchase a product
supplied by an Asian supplier between 1992 and 1997 grouped by
nation of the customer, supplier and year of transaction

&1
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Apply region = 'Asia’ on Customer table

custkey region nation
1 Asia China > Ha:: ':able
w eys
2 Europe France 1and 3
3 Asia India
Apply region = 'Asia’' on Supplier table
suppkey region nation
STEP 1 1 Asia Russia — He?tshhktablf
2 Europe Spain wi s
Apply year in [1992,1997] on Date table
dateid year
Hash table with
01011997 1997 N keys 01011997,
01021997 1997 01021997, and
01031997 1997 01031997

7
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Fact Table

orderkey custkey suppkey orderdate revenue

1 3 1 01011997 43256
2 3 2 01011997 33333
3 2 1 01021997 12121
B 1 1 01021997 23233
5 2 2 01021997 45456
6 1 2 01031997 43251

3 2 01031997 34235

7
p:y pro be/ probe

STEP 2 Hash table . Hash table | _ | 1 Hash table with 1
1and 3 o 1 01021997, and| ~ | 1
) 1 1 01031997 1
matching fact 3) o 3
table bitmap 4 o 1
for cust. dim. 3 o 3
Jjoin 1
* 0
Bitwi 2 fact table
Andse = S tuples that
satisfy all join
g predicates

7

HOW TO STORE

ICRR, University of Tokyo — May 23, 2014




ICRK,))), Invisible Join <KAI/}RA>

Bajversity of Tokye

1

o fact table dimension table
o tuples that =

1 satisfy all join nat.lon

0 predicates China

c== o France

. custkey o India

: 3

: 3 \ -=3

: f » l::mp = 3 ———— .| POSIition | _ India :

: 2 extraction L Positiens | lookup China ;

: 1 :
2 3 nation ’
=¥ = :
- T — Russia '

STEP3 3. [=== .
2 2 =
;§ E = bugnap position Russia V0
e o 1 b= Positions | lookup Russia 3
S > extraction =3
o 2 73

. > dateid year :

E 01011997 1997 :

: [orderdate 01021997 1997 :

: [01011997 01031997 1997 '

N 01011997 " :

: [o1021997 - b‘::"':‘aep _ [oioii9s7 —— _[ 1997 :

: | 01021997 e e 01021997 | values .- 1997 ;

: [01021997 o

: 01031997

. | 01031997

.
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e Apache Accumulo (Open Source)
e Apache Cassandra (Open Source)
e Apache HBase (Open Source) 8CCUMULO

e Calpont InfiniDB (Commercial)

e C-Store (Discontinued) / g:g? HiJAESE

e Druid (Open Source) cassandra InfiniDB
e MonetDB (Open Source) P e
e RCFile (Open Source) monetdb’ \/EF{T'I(‘/\I

e Sybase 1Q (Commercial)

e Vertica (Commercial branch of C-Store)

¥
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L1 121131201 122123(13.113.2133134)]4.1]42]4.3|AVG

HRS 27 1 20| 1.5 [43.8|44.1|46.0|43.0/42.8|31.2| 6.5 |44.4|14.1]12.2|25.7
@RS (MV) 1.0 1.0 02 [155[135]|11.8]|16.1|69 |64 | 3.0)29.2|1224]| 64 (10.2
OCS 04 (01101574239 1110/44[76]|06|82|3.7]|26]4.0
OCS (Row-MV)| 16.0] 9.1 | 8.4 [33.5/23.5/223|485|21.5{17.6(174)48.6|38.4|32.1(25.9

Baseline performance of C-Store “CS™ and System X “RS”, compared with materialized view cases on the same systems,

e RS: Conventional Data Base System (Not Mentioned)
e (S: Base C-Store case

e RS (MV): System X with optimal collection of MVs

e CS (Row-MV): Column store constructed from RS(MV)

e

.4
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Problem

How to retrieve
the information we need
(efficiently)

It depends on domain
Similarity (Equality)

ICRR, University of Tokyo — May 23, 2014
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Normalized values

" i /
\ _.'.’._‘ / iy !:
Normalized hearbeat series, qtdbsele0606.arff n .
° '0 25.00 JD;?O ‘
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e Goal: to find a frame of ' - o ' ' q
data similar to that we use \ \ |
for querying S~ T

| > g

':w\ - : T — 2000 o
e Similarity measure . \WJM [\w\o@
e Time Series Indexing Yo 1’0 - s m e

Nuno Castro, Paulo J. Azevedo
Significant motifs in time series.
Statistical Analysis and Data Mining 5(1): 35-53 (2012)

ICRR, University of Tokyo — May 23, 2014
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e A similarity measure is based e The time series A,B can be
on distance D between two directly represented within the
series, so that time domain of within another
e D(A,B) = D(B,A) space by some transform
Symmetry e Fourier
e D(ALA)=0 e Wavelet
Constancy of Self-Similarity e Gabor
* D(A,B)>=0 e PCA
Positivity

e Fuzzy Transform
e D(A,B) < D(A,C) + D(B,C)

Triangular Inequality ° et

ICRR, University of Tokyo — May 23, 2014
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e Given two series:

Lp = (E‘ X = Vi |p)1/p
i=1

e A=x1,x2,...Xn

eB=vylv2..yvn
YLY&,..Y Manhattan distance

1
=2 Euclidean distance

p=Infinity = Maximum
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ICRQQM ) Dynamic Time Warping (DTW) <KA‘;RA>

e Time series may vary in time and speed

e Dynamic Time Warping help the sequence re-alignment for
simil

‘ \\ g3l U
\ Normal : DTW

Sakoe, H. and Chiba, S., Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on
Acoustics, Speech and Signal Processing, 26(1) pp. 43— 49, 1978, ISSN: 0096-3518

ICRR, University of Tokyo — May 23, 2014
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e The path which produces a
sequence re-allignment.

e |tis an optimization problem 1 "

m 000
)

It can be solved efficiently by
dynamic programming
technique ( O(n”2) )

LU

0000

(a) (b) (c

-
=
~

Time Series B|| |@|®|®

o WO Ee

-
—

N aeaOMNE®EO

oWt

oWt O
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LCSS is more resilient to noise than DTW.

A. All points are matched

B. Outliers can distort distance

C. One-to-many mapping

. ignore majority
:of noise

A. Outlying values not matched
B. Distance/Similarity distorted less

C. Constraints in time & space

<« match ->‘-:

4_ match ——,

ICRR, University of Tokyo — May 23, 2014
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o After we segmented the series Euclidean DTW
(e.g., by LCSS), they are ready to ——C =y —{ oo

be indexed

S
'--A—-M Al\_......l\_l\...
. . 1 eAmngmna A~ + A A
e \We can build an index of = ’ E,AMM - o ~oum———"
8 enAesmponiiap s afteenmnaAnses
—

segments by Hierarchical
Clustering :

e The index is used to retrieve
faster the segments of interest

ICRR, University of Tokyo — May 23, 2014
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e Each time series becomes a pointin a
low-dimensional space, by means of
some transform: o

e Fourier

e \Wavelet

45

. (XN 40

35

301

e (Dis-)Similarity is measured as distance
between points in the feature space

254

204

154 o e

10
1.0 15 20 25 30 as 40 45 50
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e We can find the top K most similar v ! * Record

time series | Mw M\fu N/‘

e K-NN Algorithm v '\ V‘t W\ \me

e Retrieval on large datasets can be .
improved by indexing the space a0
e R-Tree, appropriate for spatial data 3s %
o 8°

20

. o
oo ’
(=) = o ) 9
o0 o [
0 o
4 o -] L -} o
(& Q
e o
& Sop -
o0 .
:. i - - a Q o
- -’ -
| . Top-5 nearest series
X(t) 0 sl = =
i : 2 s
H . H

Carian: 53
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Source: Wikipedia

1Rl R4 R11 : A —
'R3 R9 : :
I RS R13!!
I | [
I R10 ' '
"8 R1al ] |
|: | |
|: ______________ - |
l_ o w = w = = = o gu ________ B e - I
R ' :
 R2 : : R7  [R18 t
| | I R17 1|
I 1 ) "
I'R6 : | __1 '
I 1|R16 : : | [R1& " .
1 | il
[ R15 | . ' f "
" | : ' ' i ‘ T
'E o oo e = - f— ————————— LI S ' ~ '." » A
" ' [ ¥ $a 5 -
o o E T I Er R T T T A e e e - J " ’j 7".1 3 C AT
PR -
" b e R At Y
8 P00 R ek 5
[R1|R2 | | ) Bl Th
R3 | R4 | RS | R6 | R7 | | | e
[reme ‘mi0 [r11mi2] | [mi3[rie] | [mis/ris| | [R17/m1s|R1g]
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e [t maps a time series at
different time granularity
JnM ,'.1‘
n . \.," \ ro
. . ngl,
= (i) Au(i) -
i=1 h &
\'o } '
K ‘a_._ '.,'.“f
o «'0 J

e |[nverse Transform

M0 =555

Al Ak Am
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ICRR, Frequency Behavior (KAERA\)

5 X 10_5 FFT of Daily Returns, Energy (Points: 4096) FFT of Daily Returns (Points: 4096)
T T T T T F T T T T T T T T T T T

NIFTY
- IFTA20(9)
- — —EMA20
— — MA20

10” 10
Hertz x107° Hertz
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Many many ... many techniques
e (Classification
e Neural Networks
e Kernel Machines (e.g., SVN)
e Bayesian Methods
e Association Discovery
e Frequent (and rare) itemsets

e Association rules

e Regression models

e Model fitting

ICRR, University of Tokyo — May 23, 2014 [JITPa1 Tk 2o\ 1\ b fd =
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e The most of problems and
algorithms are NP-hard (some NP-

complete)
O Rare Itemset
tid [A|B|C|[D[E - :\ Rare ltemset with 0 support
e Generally difficult on medium- . <‘> N
sized datasets I XX ] S -
e Almost infeasible on large —

datasets

e An example:

e The search of frequent (rare)
itemsets is combinatorial

ICRR, University of Tokyo — May 23, 2014 HOW TO ANALYZE
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\‘\lll\lllul\‘ for Cosmig M Dé'-s‘ngh
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e Graphical models
e Nodes are random variables (discrete or continuous)

e Edge represent conditional dependencies between

data
e Each node has associated CPT, Conditional W’:"‘;‘,‘:'i’?ﬂ S e TR T ;’:"’";::’?““'EI
probability table hee e Noowe overnge gﬂh’ﬁ a2 |
759264
e Acyclic e l X
. . . . 5" [ Tiws Condiion
e But time can be introduced by Dynamic Pesticido in river River Flow il
. High 570 Good 454 I b i
Bayesian Networks (DBN) Low 43.0 Sl L Desd - 830 B T4
e Structure and parameters can be learnt \\ ’
b d t Native Fish Abundance
¢ Dy datla High 214am |
i B1E

e by experts
e or by both (mixed or incremental)

e Robust method to compute a-posteriori probability

ICRR, University of Tokyo — May 23, 2014
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A portion of the core subnetwork, derived from the liver transcriptional
subnetworks representative of gene expression signatures of the mouse models
of the candidate genes. (Nature Genetics, 2009)
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e We will need moreand 7 e
. 1000 A0 000 L".. .u';—...h
more computational power. Rk
00,000,000 N—n:"‘?.:"""
- et
: A
B oo Oowhm“"om
e More Moore: .
e + integration scale i
‘im
() + CIOCk frequency o " - s mmvm 2000 e ;o 08

10 , 10000

* More than Moore: |

{1000

Micron

nm

e System on Chip (SoC)

01 0.7x every
° FPGA 2 years

0.01

{ 100

1970 1980 1990 2000 2010 2020
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e Systems-on-Chips

UltraSCALE

e Faster
® Less power

 FPGA
e Programmable Hardware

Xilinx
Sngle- or Dual-Core Processor
g Hard Processer System (HPS)
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e A Bayesian coprocessor based on SoC in
FPGA

e Based on Altera Stratix IV chipset and
Nios Architecture

e Memory on chip

e Bayesian device (Memory Mapped)

e Two levels

i

e Evidence propagation is controlled
via software by Nios processor

e Clique computation is perfumed by
hardware
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e
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Big Data is a “Big” trend in IT

e Data are easy to collect, but to benefit of them we need to change the way
we manage them

e Advances in how data are stored, retrieved and analyzed pose the basis for a
technology shift

e We need to rethink the relationship between software and hardware

e KAGRA, being one of the major experiment in Physics for the following years,
might take advantage of some of these advances

ICRR, University of Tokyo — May 23, 2014



<
ICRR) KACRA

Big Data Science. Any use for KAGRA?
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