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Glitches ?

Transient disturbances of environmental (exogenous, e.g.

lightning)  and/or instrumental  (endogenus,  e.g. laser) origin;

Appear ubiquitously in the data gathered by interferometric

GW detectors, with a wide range of energies;

Idiosyncratic signals:  exhibit  a wide variety of shapes;  still 

mostly  visually  similar and  erratically recurrent. 

Glitch rate roughly  inversely proportional to glitch strenght;

Important  impact  on  instrument’s   noise (non-stationarity,

heavy-tails)  ->  glitches  spoil naïve (Gaussian) detectors.

… word  comes from Yiddish  term   גליטש
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Glitch Hunting Goals

Tracing out the origin of typical glitches  (glitch classes), and 

tweaking the machine design so as to suppress or mitigate

them;

Identifying  surviving   glitches in the GW channel,  capitaliz-

ing on information  from the instrumental / monitoring  

channels,  and  tagging/vetoing the data appropriately ;

Subtracting  identified  glitches  from the GW channel  (data

cleaning);

Characterizing  statistically  the resulting  non Gaussian noise, 

and devising robust detection algorithm (noise modeling).



Glitch Origin
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GW Detectors are MIMO

“AUX” channels  (do not couple to GW)

“GW” channel

��|� � 1,2,… ,	

��

MIMO = Multiple Input, Multiple Output

…

…

the  “input ports” are  usually  non-accessible



Check  whether a trigger in the 

GW  channel is time – coincident  

with  a trigger in one  (or more)

AUX  channel(s), at  a given signi-

ficance level.

Characterize preliminarily  accid-

ental coincidence  statistics  (time 

slide experiments).

[K.C. Cannon LIGO P070085]
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Vetoing



Popular Wisdom

We should refrain from 

throwing the baby out with the bath water…



Use knowledge  of  the coupling 

(transfer functions) between the 

AUX channels and the GW one

to check  consistency between

transients occurring in the GW

and instrumental channels .

Better veto efficiency, lower rate 

of accidental vetos.
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Ajith’s Improved Veto Strategy

[P. Ajith et al., PRD 76 (2007) 042004].



“Dream” Strategy

-Combine AUX channel data 	 ��|� = 1,2, . . ,	 		so as  to obtain  a

basis (orthogonal and complete set), 	 ��|ℎ = 1,2, . . , ;

Non redundant :  M is minimal

Orthogonal : the same trigger may not appear in two channels

Complete  :  �� = 0		∀�	 ↔ instrument is quiet (no glitches)

-Derive the transfer functions  ���|ℎ = 1,2, . . , 		connecting  

the above   �� to  the GW  channel  �� (assume linearity);

-Clean-up  (!)  the GW channel  easily  (frequency domain)  

����� �� = ��(�) − ∑ 	��
�
��� (�) 
� �

… to be recognized as a (tough !)  ICA  problem…

[A. Hyvärinen et al.,  Independent Component Analysis, Wiley (2001)]



A Toy Glitch Model

Focus on the GW  channel  (analysis can be rephrased  for  AUX 

channels  similarly);

Assume a single exogenous/endogenous disturbance entering 

IFO  via  several “susceptible”  entry points   connected to the

GW channel by  (unknown)  transfer functions  ��

� ;

Assume disturbance bandwidth  as  large compared to spectral

support of the			��

� .

�� � = ��� � +��� 		�
� � exp	(���)

�

Linear combination of transfer functions 

(impulse responses, in time domain) 

connecting the disturbance-susceptible IFO

entry points to the GW channel,

coupling phase �� = ���,

�� = disturbance propagation

delay to  entry point  ♯ i

coupling amplitude of

disturbance to entry point ♯ i

GW signal



A Toy Glitch Model, contd.

Allow for several exogenous/endogenous disturbances occurring

at random times, with random strenghts;  

Switch to time domain

�� � = ��� � +� ���

(	)	ℎ� � � − ��(	)

�	

Linear combination of  impulse responses

of (linear, time invariant) “channels” 

connecting the disturbance-susceptible IFO

entry points to the GW channel,

Propagation delay of 

disturbance ♯ m to entry point ♯ i

coupling amplitude of

disturbance ♯ m to entry point ♯ i

(random)

Sum over external disturbances

Impulse response of 

“channel” connecting

entry point ♯ i to

GW channel



A Toy Glitch Model, contd.

According to the above toy model,  glitches are linear superpos-

itions involving always the same (but  basically  unknown)  wave-

Forms, i.e., the transfer functions  	ℎ�
�

� ,   that appear in the 

data  combined  with  random amplitudes and delays.

If the  	ℎ�
�

� were  known,  glitches could be effectively sub-

tracted from the data  in (almost)  real time.   Questions :

• In what  sense  do  the  	��

�
� form  a “natural”  dictionary ?

• How many are there / how many do we need  ?

• Is there a way to retrieve the 	��

�
� from  glitchy datasets ?

Warnings:

The above  toy model  assumes  linearity.  A nonlinear generalization 

(based on Volterra-Wiener series) is possible.  Weak  time-invariance

is  also  assumed…



Non-Linear Glitches

A GEO600 “arch” glitch

TF plot  (courtesy M. Was)

Bi-linear glitch zoo table  (LIGO)



Glitchy Noise Statistics

[ , ],Tτ τΘ = + the analysis window

( )
[ [ ] ]

!

NKN e
prob K T K

K

Θ−
Θ

Θ = =

N TλΘ Θ= = expected number

of glitches in Θ
local firing-rate (may

fluctuate adiabatically , 

Cox process)

( ; ),t aψ r

a  time-frequency  atom

with  time - barycenter at  t = 0, and

shape parameters  1 2{ , ,..., }Na a a a=r

{ }( ) | 1, 2,..., [ ] ,ka k K TΘ Θ=r

a set of

i.i.d. shape params w. known priors

( ) [ , ]kt U Tτ τΘ +�

{ }( ) | 1, 2,..., [ ] ,kt k K TΘ Θ= a set of

i.i.d. firing-times,

[ ]K TΘ , the  random (Poisson–dist-

ributed)  number of glitches in Θ

τ τ +T

[M. Principe and I. Pinto,  Class.

Quantum Grav.  25 (2008) 075013]

�� � ∈ Θ = � �(� − �� � ;��� � )

��(�)

���

∈ 		 �, � + 	 						



Modeling a Glitchy Noise Component, contd.

• The proposed glitch noise model belongs to Middleton’s class 
of generalized shot noises.  [D Middleton  IEEE T-EMC-21 
(1979) 209]

• Characteristic functions for Middleton noise can be derived in 
closed form up to any order [D. Middleton, J. Appl. Phys. 22 
(1951) 1143] – depend on coarse statistical properties of the 
glitch atoms;

• Locally optimum detectors (LOD)  for such noise can be imple-
mented easily [M. Principe and  I.M. Pinto, CQG, 26 (2009) 
204001, M. Principe and I.M. Pinto, LIGO-P1000134 (2010)]



A Toy Glitch Model, contd.

According to the above toy model,  glitches are linear superpos-

itions involving always the same (but  basically  unknown)  wave-

Forms, i.e., the transfer functions  	ℎ�
�

� ,   that appear in the 

data  combined  with  random amplitudes and delays.

If the  	ℎ�
�

� were  known,  glitches could be effectively sub-

tracted from the data  in (almost)  real time.   Questions :

• In what  sense  do  the  	��

�
� form  a “natural”  dictionary ?

• How many are there / how many do we need  ?

• Is there a way to retrieve the 	��

�
� from  glitchy datasets ?

Warnings:

The above  toy model  assumes  linearity.  A nonlinear generalization 

(based on Volterra-Wiener series) is possible.  Weak  time-invariance

is  also  assumed…



Principal  Component   Analysis (PCA)  may  answer  the question  

“how  many  basis elements do we need” .

[I. T Jolliffe, “Principal Component Analysis,” Springer, 2002]

Independent PCA implementations 

on different (LIGO) glitch datasets

indicate that  the number of need-

ed basis elements  is  ~	�� to 

account for ~	��% of  the glitch 

energies, for all (typical)  glitches 

in the datasets.

[I.M. Pinto, L. Troiano et al., Int. J. Mod. Phys. C24 (2013) 1350084;

M. Cavaglia and D. Trifiro’, LIGO Document G1300368-v1]

Answers: Glitch Manifold Dimension



Glitches   are  transient  waveforms with  time - limited support   
,	

sampled at  some frequency  �� .  Any  glitch  g is thus represented

as a point  g  (vector)  in  Euclidean  space  �� ,  = ��
.

Let   D
g 

= ��|� = 1,2,… ,� our  collection  (dataset)  of glitches.

Let  D
g  

the N x G  matrix whose  columns  are the 	�� vectors ;

1)  “Standardize”  matrix   D
g
,  subtracting from each column its average:

2) Compute covariance matrix  � among standardized column  vectors :

3) Diagonalize 		�, and enumerate the eigenvalues in order of decreasing

(absolute) value.  The  corresponding   ordered  eigenvectors yield the 

PCA basis ��|� = 1,2, … ,�
.  

PCA in a Nutshell


��� = 
�� − 1 �⁄ �
��
�

Σ�� =(���,���)



PCA in a Nutshell, contd.

The magnitude  of   the PCA  eigenvalues  drops  steeply  at a 

certain order N*.

Correspondingly,  the energy of all glitches is fully recovered by

using  only  the first   N*  vectors from the PCA basis (addition

of  further terms does  not improve  representation accuracy to

any sensible extent).   

N* thus  represents a sort of  effective dimension of the manifold 

spanned by the glitch data set.

PCA appears as a compressive coding where the vectors 	��∈ ��

get represented  by the vectors 		�� ∈ ��
∗

, with ��	 = 	��,	�	 .

The  (truncated)  PCA basis ��|� = �,�, … ,�∗ 	is  not unique.

Is there a  best / natural minimal  (~�∗)	- size “basis” ?



Hints: Clustering

Once a glitch dataset 	{��} has been represented using a non-

redundant  (e.g., PCA)  “basis”  clustering algorithms can be 

used to identify  families  of  similar glitches.

Several glitch clustering algorithms have been proposed/used,

based, e.g., on proximity in coarse-feature space  [S. Mukherjee

et al., CQG 24 (2007) S701], longest-common-subsequences

[S. Mukherjee et al., J. Phys. Conf. Ser. 243 (2010) 012006], Ko-

honen self-organizing maps [S. Rampone et al., Int. J. Mod. Phys.

C24 (2013) 1350085], and GANN [S.M. Kim et al., LIGO-G1201110]

The clustering  goodness can be gauged using different metrics 

(e.g., the Davies-Bouldin cluster separation measure [IEEE T-PAMI, 

1 (1979) 224]) 



Clustering, contd.

In many cases, the cluster-centroid waveforms  are found to be

almost coincident with the centroids of glitch datasets  whose 

origin is known,  resulting from injection of external noise trans-

ients at specific instrument entry points.

This is  suggestive that  glitch  cluster  centroids   may   corresp-

ond to  the   pure “canonical” responses 	��
�

� .

[I.M. Pinto, L. Troiano et al., Int. J. Mod. Phys. C24 (2013) 1350084



Answers: Best/Natural “Basis”

• One may  argue  that  the  key requirement of a best / natural  

N* - size “basis” would  be  that of  allowing   to represent  each

glitch  in  the  data  set  {	��} using  a  fewest  significant  (nonzero)  

coefficients .

• Such a requirement  can be stated formally as follows

��� �� �	subject	to	 �� −�� ∙�� �
< �

and  is  technically a  maximal sparsity requirement .

• The above L
0

(constrained) optimization problem is NP-hard. 

But under broad assumptions one may use the L
1  

norm to apply

convex  optimization [D.L. Donoho et al., PNAS 100 (2003) 2197]

• Usually, the basis is  given, and the above is known as a  “pur-

suit” algotihm, of which several flavors exist [ibid].  In our case, 

we would  like to  find out the “best” or natural  “basis” as part 

of our  sparsest  representation problem .



Dictionary Learning

The sought natural  “basis” needs not to be  technically a 

basis (it  may be overcomplete, and contain  linearly de-

pendent subsets).  Following  Gabor, we call it a dictionary.

Goal: Given the dataset  D
g

of  glitch  waveforms,   construct

a data-adapted dictionary D
w

under a sparsity constraint.

Can be implemented efficiently as an iterative algorithm that

switches between sparse-coding (using a given dictionary), and

adaptive dictionary updating (using clustering)  [Kreutz et al.,

Neural Comp. 15 (2003) 349; Aharon et al., IEEE T-SP 54 (2006)

4311].

Preliminary results on reduced LIGO datasets indicate a  sub-

stantial representation  compression [Matta and Pinto, 2014, 

in progress].



Best/Natural “Basis” contd.

• One may further argue  that  the above  sought  dictionary 

goes  closest to the sought  	���

�
� � set.  

In the words of  Norbert Wiener,  “the best model  for a cat 

is  another cat, or preferably,  the same cat” 



Intuition

FormalizationExperiment

Modeling

you are here

Conclusions



Hopeless ?

BSS (Blind Source Separation)  - a special kind of ICA,

[S. Choi et al., Neural Info. Lett, 7 (2005) 1] also based

on  sparse dictionary learning   [M. Zibulewski, Neur. 

Comp.  13 (2001) 863] is now  used routinely  for  this:

( courtesy P.  Bofill , UPC)

+= +   …


