The AEI 10 m Prototype

June 2014 - Sina Köhlenbeck for the 10m Prototype Team

The 10m Prototype

Seismic attenuation system

Suspension Platform Inteferometer SQL Interferometer Suspensions

Low noise test bed for multiple experiments

- Prototype for future gravitational wave detectors
- Measurements at and below the Standard Quantum Limit

- Ultra high vacuum system
- Flexible configuration
- Seismic Attenuation System

The Standard Quantum Limit (SQL)

What is quantum noise?

- Photon shot noise at high frequencies
- Quantum radiation pressure noise at low frequencies

Photons in a coherent-state laser beam are not equally distributed

The SQL

The SQL is the crossover between radiation pressure noise and shot noise

13.06.2014

The AEI 10m Prototype

Seismic Attenuation System

The AEI 10m Prototype

SAS vertical performance

Purpose of the SPI

Control of the longitudinal and angular position of two SAS relative to each other:

– Longitudinal: 10⁻² 100pm/VHz @ 10mHz South table Y Ground motion Y – Angular: 10⁻⁴ 10nrad/VHz @ 10mHz (ZH/Vm) DSAL 10⁻⁶ 10⁻¹⁰ 10⁻¹² 10⁻³ 10⁻² 10^{-1} 10^{0} 10^{2} 10¹ Frequency (Hz)

Working principle

- Heterodyne Mach Zehnder interferometers
- Modulation bench outside the vacuum
- Two diagnostic interferometers
- Two measurement interferometers
- Phase measurement with phasemeter
- Differential wavefrontsensing (DWS)

NOLIGHT

INNOLIGHT

Key features of the SPI

AOMs for heterodyne frequency offset

Digital signal processing with LIGO-style CDS

for LISA Pathfinder

000000000

Nd:YAG NPRO Laser stabilized to iodine reference

The AEI 10m Prototype

Key features of the SPI

Purpose of the diagnostic interferometer

- Long optical path until the base plate
- Measures (common mode) noise
- Subtracted from measurement interferometers

Performance of the diagnostic IFO

- Performance limited
 by optical path
 length difference
 noise (OPD)
- Caused by noise
 from the AOM
 drivers, stress in the
 fibers and on the
 modulation bench
- Solution: OPD stabilization

OPD stabilization

- Phase measurement of the dignostic IFO
- Digitally filtered signals
- DAC provides analog signal
- High voltage amplifier
- Analog low pass filter

OPD stabilization

- Two PD's for each IFO
- First PD is an inloop sensor
- Second PD is an out-of-loop sensor
- Residual noise
 from electronics
 and phasemeter

Performance of the OPD stabilization

Performance of the OPD stabilization

 High frequency noise cancelled by subtraction of common mode noise

Performance of the OPD stabilization

- High frequency noise cancelled by subtraction of common mode noise
- Below 1Hz
 suppression by
 OPD
 stabilization

Frequency Noise Interferometer (FNI)

- Test for the lodine
 Laser frequency
 stabilization
- Test for the OPD stabilization
- 1 m arm length miss match, on central table
- Built with off the shelf UHV mounts

Performance of the FNI

- Measurable
 because of the
 OPD stabilization
- Frequency stabilization is working
- Modelled 1/f
 slope frequency
 noise:
 40kHz/VHz @ 1Hz

Comparing diagnostic and frequency noise IFO

- Subtraction
 reduces high
 frequency noise
- FNI lower noise
- Power and contrast better in FNI

Comparing diagnostic and frequency noise IFO

- Subtraction
 reduces high
 frequency noise
- FNI lower noise
- Power and contrast better in FNI

The south interferometer (SIFO)

- Measures the relative table displacement
- Last mirror had to be adjusted inside the vacuum system

SIFO Alignment

Relative table motion

- Inter table motion
 without any
 feedback from the
 SPI
- All degrees of freedom
 controlled with table signals
- Passive isolation and active control

Relative table motion with SPI feedback

- Stabilized with SPI and table signals
- All degrees of freedom controlled
- Between 100 and 10 mHz suppression of 3 orders of magnitude

Other degrees of freedom

- Optical lever for central tabel pitch and yaw
- Differential wavefront sensing

Outlook

- Build the optical lever
- Investigate the rotational degrees of freedom
- Implement the west arm

13.06.201

The SQL-Interferometer

Current status and outlook

- Dirty suspension assembly
- ✓ Dummy mass hanging
- ✓ Assembly area

 Pitch alignment
 Clean suspension assembly
 Transfer to vaccum system

Thank you for your attention!

