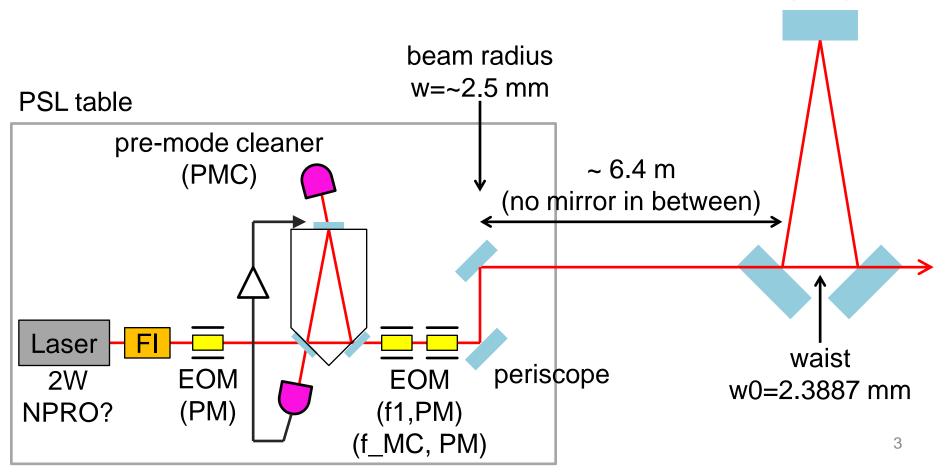
Study on iKAGRA PMC

Yuta Michimura

Ando Group

Department of Physics, University of Tokyo


Scope

- Derive some requirements for iKAGRA PMC
- Collect information about iKAGRA PMC candidates
- References:
 - LIGO-T0900649 (aLIGO PSL design)
 - LIGO-T0900577, T0900578 (PMC servo circuits)
 - LIGO-T990025 (iLIGO PSL design)
 - https://wiki-40m.ligo.caltech.edu/PSL/Pre Mode Cleaner
 (eLIGO PMC specs)
 - JGW-D1402348 (drawings of Miyoki-san's PMC)

Why do we want PMC for iKAGRA

- beam pointing reference to IMC
- divide work before PMC (laser side) and after PMC (IMC side)

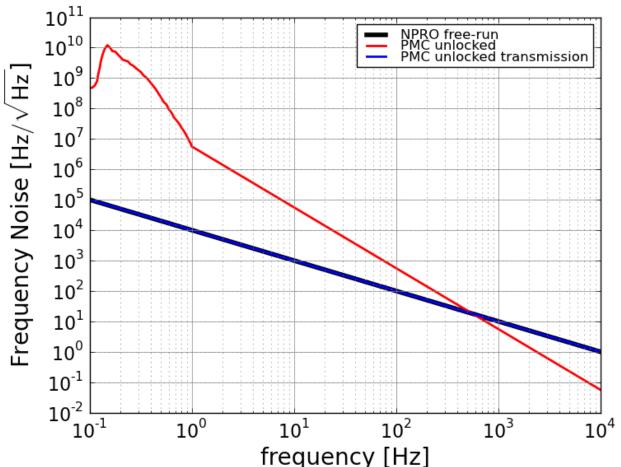
input mode cleaner (IMC)

iKAGRA PMC Requirements

- PZT range
 - larger than ~4 um (assuming thermal expansion of invar: 1e-6, PMC spacer length: ~20 cm, temperature drift: ~10K)
 - if IMC drift makes too much laser frequency drift, we may have to apply temperature servo for PMC (or laser)
- UGF
 - should be smaller than PZT resonant frequency
 - higher than 100 Hz (aLIGO is 10kHz)
 - requirement derivation is shown next 4 pages
- · beam pointing drift
 - smaller than ~3 urad/day
 - pointing drift should be smaller than IMC drift and TAMA stack tilt drift was ~3 urad/day
 - [R. Takahashi+: RSI 73, 2428 (2002)]
- do not use so much money

UGF Requirement Derivation 1

- higher the better, but cannot be higher than PZT resonance
- frequency noise after PMC shouldn't be larger than that of free running NPRO
- assume PMC length fluctuation is same as seismic noise (too pessimistic)
- assume PMC half round trip length is 20 cm
- cavity length fluctuation will be suppressed by PMC servo
- residual length fluctuation will be converted into frequency noise of the transmitted beam with HPF

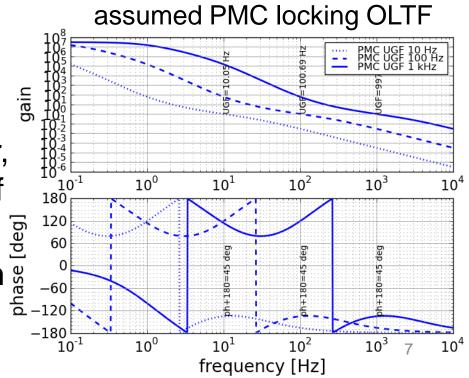

$$H(f) = \frac{1}{1 + if_{\rm cp}/f}$$

where fcp is the cavity pole (~2 MHz) (see <u>JGW-T1201121</u>)

frequency noise of the input beam will also be added

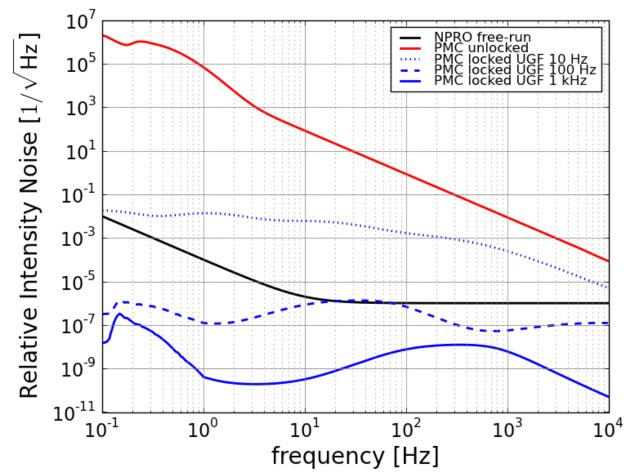
UGF Requirement 1

 UGF can be very low from frequency noise point of view (frequency noise from residual cavity length fluctuation is high-passed out and frequency noise of the transmitted beam is dominated by the original incident NPRO beam)


UGF Requirement Derivation 2

- intensity noise after PMC shouldn't be larger than that of free running NPRO
- residual cavity length fluctuation will be converted into intensity noise of the transmitted beam with

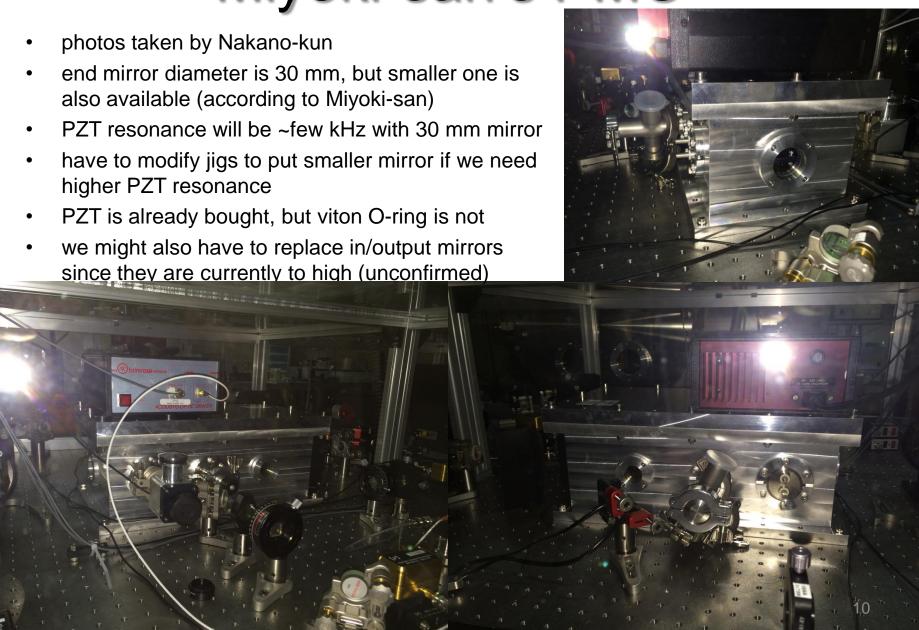
$$rac{P_{
m trans}}{P_{
m in}} \simeq 1 - \left(rac{4\mathcal{F}}{\lambda}
ight)^2 \delta L$$


(assuming critically coupled cavity without any loss)

- since the effect is non-linear, we have to assume OLTF of PMC locking loop →
- calculation of spectrum from general 2nd-order effect is shown in my note (in Japanese)

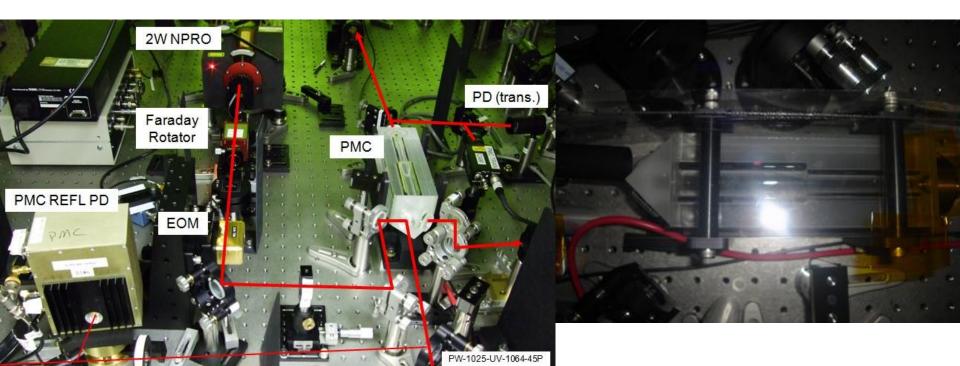
UGF Requirement 2

 UGF 100 Hz is enough from intensity noise point of view (cavity detuning is assumed to be ~1e-12 m, which corresponds to ~1 kHz; this is roughly 1 mV assuming PDH signal peak-to-peak is ±1 V)



iKAGRA PMC Candidates

Miyoki-san's seems like the strongest candidate


	Mio lab	Miyoki-san	eLIGO
Shape	triangular	triangular	triangular
Mirror RoCs	30 cm	30 cm	100 cm
Round-trip length	42 cm	40 cm	41 cm
FSR	714 MHz	750 MHz (calc)	713 MHz
Finesse	2900 (s), 220 (p)	measured mirror reflectivity was 99.97 %?	800
Transmissivity	77 % (s), 86 % (p)	~20 %? (s), ~13 %? (p)	?
Spacer	Invar	Invar	Fused Silica
Comment	Originally planned to be used for characterization of bKAGRA laser.	No PZT attached yet . Aluminum vacuum enclosure also available. (drawings: JGW-D1402348)	Rana offered spare one. Needs shipping fee.

eLIGO PMC

- photos taken at Caltech 40m
- no modification is needed, but we have to ship it
- shipping fee is currently under estimation (23.5 kg mirror was 18万円 according to Kikuchisan; PMC is ~3 kg)

Electronics, Electro-Optics

- high voltage amplifier for PZT
 - we need this also for periscope mirror
 - at least 4 channels in total for iKAGRA IOO (NPRO, PMC, periscope x 2)
 - Thorlabs MDT693B: 3ch, 25万円, ~1 week
 - MESS-TEK M-2629: 6ch, 63万円, ~1 week
 - if there's no money, we have to borrow from someone
- analog servo filters
 - to achieve high UGF (above ~400 Hz), we need analog circuits (with switches using BO of CDS for DC boosts)

EOM

- if there's no money, we have to borrow from someone
- modulation frequency must be set from MIF group
- RF PD (for PMC_REFL), DC PD (for PMC_TRANS)
 - broadband?

Test at ICRR, Kashiwa

- PMC test will be done at Kashiwa by Nakano and Michimura
- test includes;
 - PZT resonances
 - finesse, FSR, TMS
 - beam pointing stability
 - servo filters (possibly with digital system)
- detailed schedule, plans will be fixed soon (~ 1 month between May to Sept 2014)
- iKAGRA PSL table will be shipped to ICRR soon
- students from Niigata U or Toyama U could help (maybe only during summer vacation)

Conclusions so far

- we will put PMC also for iKAGRA
- requirements are not so severe at all, but we should check pointing stability by measurement
- PZT range should be larger than ~4 um
- UGF should be higher than ~100 Hz from intensity noise point of view; this means PZT resonant frequency should be higher than ~1 kHz; but this could be achieved with 30 mm mirror; also, 100 Hz UGF servo is easily done with CDS
- we need PZT drivers (~50万円 or borrow), mirrors? (~10万円), EOM (borrow?), servo filters(AEL), RF PD(AEL), and DC PD (AEL)
- sideband frequency for PMC should be set soon (MIF)
- assembly and test will be done by Nakano and Michimura at ICRR, Kashiwa