

Development of ground based laser interferometers for the detection of gravitational waves

Rahul Kumar ICRR, The University of Tokyo, 7th March 2014

Outline

- 1. Gravitational waves, nature & their sources
- 2. Gravitational wave detectors (GWD)
 - a) Ground based
 - b) Space based
- 3. Noise sources
- 4. Thermal noise
- 5. Current status of detectors
 - a) Advanced LIGO
 - b) GEO-HF
 - c) KAGRA
- 6. Conclusions

What are Gravitational waves?

- Proposed by Einstein in 1916
- Described as ripples in the curvature of space-time

GW are yet to be detected

Evidence of existence

- Hulse and Taylor were awarded Nobel prize in 1993
- Discovery of binary pulsar PSR 1913+16

Decay of the orbital period of binary pulsar PSR 1913+16 with time

Nature of GW

- Weakest among all forces
- Produced when matter is accelerated in an asymmetrical way
- Quadrupole in nature which means it has varying moment of inertia
- The amplitude 'h' of the GW can be defined as,

$$h = \frac{2\Delta L}{L} \sim 10^{-23} \text{ (rms)}$$

where
$$\frac{\Delta L}{L}$$
 is the strain

Polarisations: h₊ and h_×

Effect of two polarisations of gravitational waves on a ring of test particles

Sources

- Burst sources
 - Supernovae (Crab Nebula)
 - Coalescing compact binaries
- Periodic sources
 - Pulsars (rapidly rotating neutron stars)
- Stochastic sources
 - Superposition of waves from many sources

Coalescing binaries

Detection of GW

Designs currently being developed around the world includes:-

- Bar Detectors
- Ground based interferometers (frequency greater than 10Hz)
- Space based interferometer (Millihertz range)

Bar detectors

- Started by Joseph Weber in 1960
- Resonant bar detectors were not successful

Low temperature bar detectors in Italy (Rome), CERN, Australia (Perth) and Netherlands

Laser interferometry

- Proposed by R. L. Forward and R. Weiss
- Based on Michelson interferometer
- Offers high sensitivity over a wide range of frequencies
- Longer armlength improves the sensitivity

Michelson interferometer

Space based detector

- Earlier called as LISA (laser interferometer space antenna
- Armlength: 1 million km
- Low frequency detector: $h \approx \frac{10^{-21}}{\sqrt{Hz}}$ at 1 mHz

Noise sources

Seismic noise

< 10 Hz

Thermal noise

Random vibrations of atoms & molecules

Few Hz to > 100 Hz

Quantum noise

propagation of surface wave on the surface of the earth

Gravity gradient noise

fluctuating gravitational

force on mirrors

////////

< 10 Hz

gravitational

- Photon shot noise (HF)
- Radiation pressure noise (LF)

How to reduce the noise?

Seismic noise

- Quiet location
- Multi stage pendulum suspension

Gravity gradient noise

- Going underground (mines)
- Space based detector

Thermal noise

 High quality (low mechanical loss)materials (ex. fused silica, sapphire)

Quantum noise

- Increased laser power
- Bigger test mass

Thermal noise (TN)

- TN is the most significant noise sources below 100 Hz
- TN in the system reveals itself in two ways:
 - Brownian motion
 - Temperature fluctuations
- In GW detectors study of TN is important in the suspension elemenst:
 - Test mass mirrors, fibres etc

Suspension thermal noise

In addition, the loss can be reduced by storing energy in the lossless gravity which is known as the **dissipation dilution factor**, **D**.

D is the ratio of total gravitational energy of the suspension pendulum motion to the elastic energy stored in the wires 17

Mechanical loss

Network of detectors

Wide network of detectors built around the world

LIGO & Advanced LIGO

- 4 km long interferometer at 2 sites in USA
- Funded by NSF (200 million \$)
- LIGO detectors are currently undergoing an upgrade to advanced LIGO
- A third detector in India (LIGO India, Indigo project)

Vacuum tanks housing the optics

Interferometer

Advanced LIGO upgrades

pendulum

CO₂ laser - pulling machine

mm thick

Neck region

cancellation region Thermoelastic

150 µm

For the fabrication of fused silica fibres

Advanced LIGO suspension

Sensitivity - LIGO

Best strain sensitivity measured: $h \approx 3 \times 10^{-23} \sqrt{Hz}$ (100 Hz to 200 Hz) 25

Sensitivity - AdLIGO

26

Watch out for 2015-16

- AdLIGO is currently under installation/fabrication
- Is expected to be online by 2015-16
- Increased laser power, improved optics, coating materials
- Will employ a quasi monolithic quadruple pendulum system (fused silica)
- Seismic noise below 10 Hz
- Sensitivity will be improved by a factor of 10
- Expected events several 10's per year

GEO-HF detector

- Earlier called GEO-600 detector
- German-British detector in Hannover
- Armlength 600 m
- **Currently** undergoing an upgrade to GEO-HF (high frequency)

Suspension system

Triple pendulum system of the GEO detector

Status – GEO-HF

- GEO-HF will employ squeezed light technology
- Will install an output mode cleaner to improve it's performance above 1 kHz
- Readout scheme from Hetrodyne (RF) to a DC read-out (Homodyne detection system)
- Increased laser power: 35 W
- Will be the only detector to be online till 2016 while other detectors are undergoing an upgrade

KAGRA detector

- Currently being built in Japan
- Located 200 meters underground to reduce seismic noise
- KAGRA is unique compared to other detectors since it will be the first cryogenic temperature detector
- Cryogenic temperature will reduce thermal noise and will improve the sensitivity

Cryogenic detector

Cryogenic payload

- Cryogenic payload is in the form of multiple pendulum, housed in a cryostat operating at 20 Kelvin
- Use of Sapphire as a substrate material for the suspension (mirrors and fibres) system
- Sapphire is a crystalline material.
 - Extremely low mechanical loss at 20 K
 - Good optical properties
 - High thermal conductivity

Conclusions

- A network of detectors exist around the world
- Science runs conducted by the 1st generation of detectors have placed upper limits on various sources
- 2nd generation of detectors are expected to be online by 2016
- New materials and technologies are expected to improve the sensitivity by 10 times
- Once online may lead to 1st detection of GW
- Open new avenues in the field of GW signals
- Continued R&D is required for the 3rd gen detectors for precision GW astronomy