Finesse measurement of an optical cavity for vacuum induced transparency

工学系研究科物理工学専攻(小芦研)M1 市田昌己

目次

・背景

光子数分離とは 非破壊光子数分離の必要性

・原理

光と原子の相互作用 電磁誘起透明化(EIT) 真空誘起透明化(VIT) VITを利用した光子数分離

・実験の進捗状況 共振器の設計 共振器のフィネス(反射率)の評価

・まとめと今後の展望

目次

・背景

光子数分離とは 非破壊光子数分離の必要性

·原理

光と原子の相互作用 電磁誘起透明化(EIT) 真空誘起透明化(VIT) VITを利用した光子数分離

・実験の進捗状況 共振器の設計 共振器のフィネス(反射率)の評価

・まとめと今後の展望

非線形光学効果

•非線形光学効果

物質に対して光を入力として用いたときに生じる効果のうち, その大きさが入射光の強度に比例しないような現象.

- ・高調波発生
- Kerr effect, Pockels effect

・多光子遷移など

- ・様々な応用
 - ・光スイッチング
 - ・Pockels素子
 - ・量子計算のための nonlinear gate など

(Universal gate set: Hadamard, phase, $\pi/8$, C-NOT)

・光同士での相互作用を必要とするため,線形効果に比べ効率が低い.

複数の光子数状態の重ねあわせ(e.g Coherent状態)を各光子数状態へ分離する 非破壊的に分離ができるなら,光子数の確定した状態を利用できる. ⇔ 光子検出器での破壊測定

・複数光子状態 : 光子の一部を取り出して情報を抜き取る光子数分離攻撃が可能

・単光子状態 : 光子の一部を取り出して情報を抜き取ることができない

・単光子状態 : 光子の一部を取り出して情報を抜き取ることができない

(量子リソグラフィ)

n photon state

$$\mathcal{H}_{photon} = \hbar \omega a^{\dagger} a \quad \dots 時間発展: e^{-\frac{i}{\hbar}\mathcal{H}t} |n\rangle \Rightarrow e^{-in\omega t} |n\rangle$$

位相変化=角周波数×n

まとめ+方針

- ・光と原子気体との相互作用を利用して,量子情報へ応用可能な 非線形光学効果を観測する.
- ・現在の目標は光子数分離

非線形光学効果

→ 物質に対して光を入力として用いたときに生じる効果のうち, その大きさが入射光の強度に比例しないような現象.

光子数分離

- → 複数の光子数状態の重ね合わせを, 光子数がある値に確定した状態へ射影すること
 - ・単光子状態…安全な量子通信
 - ・複数光子状態…量子リソグラフィ等

目次

・背景

光子数分離とは 非破壊光子数分離の必要性

・光子数分離の原理 光と原子の相互作用 電磁誘起透明化(EIT) 真空誘起透明化(VIT) VITを利用した光子数分離

・実験の進捗状況 共振器の設計 共振器のフィネス(反射率)の評価

・まとめと今後の展望

光-原子間相互作用

2準位間での相互作用

$$\mathcal{H}_{int} = -\mathbf{d} \cdot \mathbf{E}$$

 $= -\frac{\hbar\Omega_p}{2}\sigma_{eg} + H.C.$ $\sigma_{eg} = |e\rangle\langle g|$

3準位間相互作用

3準位間での相互作用(干渉)

$$\frac{\mathcal{H}_{int}}{\hbar} = -\frac{\Omega_p}{2}\sigma_{eg} - \frac{\Omega_c}{2}\sigma_{ef} + H.C.$$
回転波近似, $\delta = 0$

• Dark State
$$|D\rangle$$

 $\frac{\mathcal{H}_{int}}{\hbar} = -\frac{\Omega_p}{2}\sigma_{eg} - \frac{\Omega_c}{2}\sigma_{ef} + H.C.$ の固有状態のひとつ.... $\mathcal{H}_{int}|D\rangle = 0$

≪性質≫

・|g>, |f>準位が安定ならば長い寿命を持ち,十分に長い時間が経てば 相互作用,自然放出等によって原子の状態は|D)に収束する.

EITを利用した光子数分離?

EITによって,原子集団を透過するProbe光には遅延が生じる.

→EITを利用してCoherent状態を光子数状態へ分離できるか?

$EIT \rightarrow VIT$

◎ EITと同じ3準位系を利用して光子数分離を行うために:

- ・|e>, |f>準位の結合強度を保ちつつ,
- ・|e>, |f>準位を結合している光子数を減らす.

・Control光によるカップリングを共振器モードによるものに置き換える. EITと同様に透過と遅延が生じ,これは真空誘起透明化(VIT)と呼ばれる.

真空誘起透明化(VIT)

真空誘起透明化(VIT)

・原子中を伝搬する光の群速度

$$v_g = \frac{\partial \omega}{\partial k} = \frac{c}{n + \omega \frac{dn}{d\omega}}$$

→EITと同様に遅延と透過が生じる

•遅延
$$\tau_m$$

 $\tau_m = \frac{OD}{\kappa} \frac{\eta}{(1+\eta)^2} \cdot \frac{1}{m+1}$

m:photon number

Gor Nikoghosyan, Michael Fleischhauer, Arxiv:0910.1900v2,2010

$$\eta = \frac{4g^2}{\kappa\Gamma}$$
 : Cooperative parameter

VITを利用した光子数分離

・パルスの時間幅 T_{min} に比べ遅延 τ_m が大きいほど光子数分離の性能は良い

$$\frac{\tau_m}{T_{min}} = \frac{0D}{2} \cdot \frac{\eta}{1+\eta} \cdot \frac{1}{1+m}$$

→・原子気体の光学的厚さOD
・Cooperative Parameter η を大きくする

VITを利用した光子数分離

Haruka Tanji-Suzuki, et al. Science 333, 1266 (2011)

光子数分離を行うには遅延の大きさが不十分 原子-光子相互作用をより強くする必要がある

まとめ

・A型の3準位原子の一つの遷移に共鳴する微弱な光(Probe光)が入射するとき, もう一方の遷移が強く結合されているとProbe光は透過し、群速度の低下が生じる

- •Control 光によって結合されている \rightarrow EIT •Cavity-modeによって結合されている \rightarrow VIT (Probe) Ω_p $|f\rangle$
- ・Probe光の含む光子数に対してVITの応答は変化し,遅延や透過率などについての 光子数依存性をもつ
 - ・実際に遅延が生じることは実験で確かめられているが、その光子数依存性を 確認できるほど大きくはなく、原子とCavity-modeの結合を更に強くする必要がある

目次

・背景

光子数分離とは 非破壊光子数分離の必要性

・光子数分離の原理 光と原子の相互作用 電磁誘起透明化(EIT) 真空誘起透明化(VIT) VITを利用した光子数分離

・実験の進捗状況 共振器の設計 共振器のフィネス(反射率)の評価

・まとめと今後の展望

パラメータの最適化

$$\frac{\tau_m}{T_{min}} = \frac{OD}{2} \cdot \frac{\eta}{1+\eta} \cdot \frac{1}{1+m}$$

◎ OD:高密度なRb原子気体のトラップ → B4の卒論の課題 Probe光をCavityに共鳴させる. $\langle OD_{eff} \rangle = \langle N \rangle \times OD_{atom}$

©
$$\eta$$
 : 他のパラメータを用いて書き直すと
 $\eta = \frac{4g^2}{\kappa\Gamma} = \frac{24\mathcal{F}}{\pi k^2 w_0^2}$
 $\eta = \frac{\pi \sqrt{R}}{\kappa\Gamma} = \frac{\pi \sqrt{R}}{\pi k^2 w_0^2}$
 \mathcal{F} : Finesse $\left(= \frac{\pi \sqrt{R}}{1-R} \right)$
 w_0 : Beam waist
 $N = \frac{3}{2\pi}$
photonが入射から透過までに
Cavity内を往復する回数の期待値

k:wave number(Probe光にCouplingする遷移周波数)

F

共振器の設計

Probe光に共鳴するCavity + Control用のCavity = 技術的な問題があり,避けたい

一つのCavityにProbe光とControl用のモードを同時に共鳴させる

共振器の設計

◎共振器がRb原子の2つの遷移に共鳴

・A=780nm
 ・Rubidium 87の5S軌道の超微細分裂に共鳴
 +ほぼ定在波の節と腹が一致

$$\rightarrow v_{FSR} = 3.4173 \text{GHz}$$
$$\rightarrow L = 4.38 cm$$

Beam weist

$$w_0^2 = \frac{L\lambda}{\pi} \sqrt{\frac{2R}{L} - 1} \rightarrow R \gtrsim \frac{L}{2}$$
$$R = 2.21cm \qquad \eta = 2$$

◎高反射率のミラー

$$\mathcal{F} = 1.0 \times 10^5 \ (R \sim 99.997)$$

0

$$\eta = \frac{4g^2}{\kappa\Gamma} = \frac{24\mathcal{F}}{\pi k^2 w_0^2} \sim 20$$

フィネス牙の評価

$$\eta = \frac{4g^2}{\kappa\Gamma} = \frac{24\mathcal{F}}{\pi k^2 w_0^2} \sim 20$$

•
$$w_0^2 = \frac{L\lambda}{\pi} \sqrt{\frac{2R}{L} - 1}$$
 共振器長L:共振器を設置する際に調節可
→ミラーの曲率半径Rに誤差があっても補正できる

$$\cdot \mathcal{F} = \frac{\pi \sqrt{R}}{1-R} \quad \begin{pmatrix} R = 0.9997 \rightarrow F \sim 10^4 \\ R = 0.997 \rightarrow F \sim 10^3 \end{pmatrix}$$

・加工精度に依存,修正ができない → 予め評価しておく
 ・反射率やスペクトル幅の測定は難しい
 →共振器が共鳴から外れるときの減衰の様子から
 *F*を測定する(Ring-Down measurement).

Ring-Down measurement

・共振器の一方のミラーをPZTを用いて一定速度vで移動させる

・透過光をAPDに入射、出力をオシロスコープで測定

Ring-Down measurement

Ring-Down measurement

2013-10-11 04:07:17

測定結果

◎原因?

- ・ビームがミラーの中心に当たっていない? \rightarrow ずらす($\mathcal{F} \sim 1.7 \times 10^4$)
- ・表面が汚れている?
- ・測定用に選んだものがたまたま不良品
- ・レーザーの強度が大きすぎる?
- ・レーザーの線幅の影響で測定が不正確?
- → 変えても同程度(1.7×10⁴)
- → 弱くしても(50µW)同じ
 - → 別の方法でも測定する.

透過光と反射光を利用した測定

Christina J. Hood , H. J. Kimble, Jun Ye Phys. Rev. A 64, 033804 (2001)

$$\frac{P_t}{P_{in}}, \frac{P_r}{P_{in}}$$
を測定し、 ϵ 、L、 \mathcal{F} について解く $\frac{P_t}{P_{in}} = 6.1(\pm 0.6) \times 10^{-3}$

$$\frac{P_r}{P_{in}} = 0.82 \pm 0.03$$

 $7.4 \times 10^3 < \mathcal{F} < 1.4 \times 10^4 \quad (0.85 < \epsilon < 1)$

同時に行ったRing-downの測定: F = 1.0(±0.2) × 10⁴ ... 誤差の範囲内で一致

ミラー表面の加工精度

◎測定結果

 $\bullet \mathcal{F} < 2.0 \times 10^4$

Ring-downでの測定と,反射光と透過光を利用した測定
 (T = 2.0 × 10⁻⁴を仮定)は誤差の範囲内で一致

◎シミュレーション

- ・T = 2.0 × 10^{−4} (分光計での測定で確認済み)
- $L \leq 1 \times 10^{-4}$
- $R \ge 99.997\% \ (\mathcal{F} \ge 1 \times 10^5)$
- ・表面粗さ $\leq 3Å(R < 25mm$ では測定不可)

 $F \ge 1 \times 10^5$ に必要な精度:表面粗さ ≤ 1 Å

・発注当時(去年)に比べて精度は良くなっているそうなので, もう一度発注,受け取り次第評価を行う.

目次

・背景

光子数分離とは 非破壊光子数分離の必要性

- ・光子数分離の原理 光と原子の相互作用 電磁誘起透明化(EIT) 真空誘起透明化(VIT) VITを利用した光子数分離
- ・実験の進捗状況 共振器の設計 共振器のフィネス(反射率)の評価

・まとめと今後の展望

まとめ

・Rb原子準位間遷移に強く結合するCavityの設計

Cooperative Parameter
$$\eta = \frac{4g^2}{\kappa\Gamma} = \frac{24\mathcal{F}}{\pi k^2 w_0^2}$$
を大きくとる.

「・Beam waistをできるだけ小さく ・Optical Depthを大きくするため,Probe光も同時に共鳴させる

→ 共振器長L,曲率半径Rの決定

・Finesseはできるだけ大きく(ただしTransmission dominant)

測定の結果: $\mathcal{F} \leq 2 \times 10^4$ (表面粗さのため)

→再発注,届き次第再評価の予定

