Control

Stepping motor
 and
 Displacement sensor
 and
 Actuators

Dan Chen
2013／12／17 Cryo－payload meeting

Test of actuator for initial alignment in cryogenic temperature

82	1．5．1	Stepping motor（ICRR）	134日	13／11／18（月）14／03／31（月）		8\％	8\％	Chen Dan
83	1．5．1．1	Candidate list	27日	13／12／05（木） $13 / 12 / 31$（火）		50\％	50\％	Sekiguchi TakanoriTakahashi R．Chen Dan
84	1．5．1．2	Procurement of candidates	78日	13／11／29（金）14／02／14（金）		0\％	0\％	Takahashi R．Yamamoto Kazuhiro
85	1．5．1．3	Preparation for candidates test	26日	13／11／18（月） $13 / 12 / 13$（金）		0\％	0\％	Chen Dan，Student from AEI Hannover
86	1．5．1．4	Test at cryo temp	1．43月	14／02／17（月）14／03／31（月）	84,85	0%	0\％	To be determined （ICRR），Small cryostat

Candidate and Status

Name	Number we have in ICRR	comment
Stepping motor	0	The delivery time is 2．5 month．The company said this works at 4K．We have ordered．
Pico motor	1	We had a cooling test using a PT cooler．But it did not work
below 200K．		

Calculation of the requirement for the mass shifter

Dynamic range we need：
$1 \mathrm{mrad} \leftarrow$ Beginning adjustment limit by hand
Accuracy we need：
3 urad $\leftarrow 1$ step of the mass shifter $=1 \mathrm{~cm}$ shift of main beam on the other TM

For IM calcuration by Dan and Ono

Mass： 0.5 kg
Drive range： $\pm 4 \mathrm{~cm} \rightarrow \pm 1 \mathrm{mrad}$ Drive accuracy： $120 \mathrm{um} \rightarrow 3$ urad
Mass： 1.0 kg
Drive range： $\pm 2 \mathrm{~cm} \rightarrow \pm 1 \mathrm{mrad}$ Drive accuracy： $60 \mathrm{um} \rightarrow 3$ urad
Mass： 2.0 kg
Drive range： $\pm 1 \mathrm{~cm} \rightarrow \pm 1 \mathrm{mrad}$ Drive accuracy： $30 \mathrm{um} \rightarrow 3$ urad
＊We assumed the cryo－payload is rigid．So the real dimanic range should be smaller．
＊The drive accuracy of the mass shifter we will make can be smaller．So the accuracy angle can be finer．
＊Do we need more dymamic range？We can not use water level？

Test of actuator for initial alignment in cryogenic temperature A / I

－We will make a test stage for Stepping motor．
－We have to consider the connection point between the motor we ordered and this stage．The stage which VI group have is not fit with the stepping motor we ordered．We have to design it again．（Just reduction）
－We have to consider the rotate component is．
－We have to calculate the requirement．

Test of Displacement sensor and actuators（OSEM） in cryogenic temperature

87	1．5．2	Displacement sensor and actuators （between Intermediate Mass and Intermediate Recoil Mass）（ICRR）	117日	13／11／04（月）14／02／28（金）		0\％	OX	Chen Dan
88	1．5．2．1	Candidate list of light sources and photo diodes	12日	13／11／04（月）13／11／15（食）		0\％	0\％	Suzuki T，Takahashi R．Yamamoto Kazuhiro，Chen Dan
89	1．5．2．2	Procurement of candidates of light sources and photo diode	26日	13／11／16（土） $13 / 12 / 11$（水）	88	0\％	0＊	Chen Dan
90	1．5．2．3	Preparation of test for the candidates of light sources and photo diode	12日	13／11／29（金）13／12／10（火）		0\％	08	Chen Dan，Student from AEI Hannover
91	1．5．2．4	Test for the candidates of light sources and photo diode	20日	13／12／12（木） $13 / 12 / 31$（火）	90，89	0\％	0＊	Chen Dan，Small eryostat
92	1．5．2．5	Preparation for test of sensor	27日	13／11／17（日） $13 / 12 / 13$（全）		0\％	0\％	Student from AEI Hannover
93	1．5．2．6	Test of sensor at cryogenic temperature	54日	14／01／06（月）14／02／28（舍）	92	0\％	0＊	To be determined （ICRR），Small eryostat

Status

PD：We tasted 2 PDs at low temperature．
LED：One of LD works at 77 K ．

Name	Type	Peak	Number we have in ICRR	comment
S1223－01	$\begin{aligned} & \text { Si PIN } \\ & \text { PD } \end{aligned}$	960 nm	5	We had a cooling test． Efficiency decreases at low T（37\％）
G8370－01	InGaAs PIN PD	1550 nm	0	Tomaru－san said this works at low T． I asked a quotation but is was out of stock．
FGA21	InGaAs Pin PD	1600 nm	2	The quantum efficiency decreases at low $\mathrm{T}(15 \%)$ ．
	$1223-01$		S－	

LED

Name	Type	Peak	Number we have in ICRR	comment
OP232	GaAIAs	890 nm	5	This is used in OSEM at room temperature．
L2656－03	GaA1As	890 nm	0	Tomaru－san said this works at low T． I ordered．Delivery time $=2$ weeks
ML925B45F	InGaAsP	1550 nm	2	

Liquid nitrogen test： 77 K

OP232	Does not work
ML925B45F	Works！

Test of Displacement sensor and actuators（OSEM） in cryogenic temperature A / I

－Search other PD and LED．（Manu is in process．）
－Test LEDs we have in 77K and cryostat．
－Calculate the noise from the data we have now．
－Actuator？

Dark noise of FGA21

