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Introduction

« GW detectors are amongst the most sensitive instruments ever
built.

e most limitations: intrinsic noise sources

e technical noise minimized as good as possible

* noise limitations due to:
— seismic noise
— thermal noise
— quantum noise
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Noise in interferometric GWDs

simplified interferometric GW detector:
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Introduction

* |imits of GW detectors
* use of cryogenic temperatures to overcome thermal noise issues

* no feeling for temperature regime — investigations of materials
needed as new physics has to be explored

* main issues:
— thermal noise
— optical properties (mainly absorption)

Ronny Nawrodt, 06/12/2013 GW Exchange Meeting - Tokyo Institute of Technology 5/44



Friedrich-Schiller-Universitat Jena

e thermal noise of optical components
is a limiting factor at the most
sensitive part (together with
guantum noise)

* thermal noise of the suspension
elements limits the low temperature
performance of the detector
together with quantum noise

-> 2 aims: reduction + understanding
the sources of noise

Ronny Nawrodt, 06/12/2013
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Thermal noise issues

e What is thermal noise for us?

— ,,Thermal noise” throughout this talk does not mean the whole
thermal noise of the optics but the part that is seen by the laser
beam.

* types of thermal noise
— triggered by thermal energy k,T

— triggered by temperature fluctuations oT that couple via temperature
dependence of material properties
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Thermal noise issues

 Thermal energy triggered noise — Brownian thermal noise
 example: thermal noise of a mirror substrate

2k T 1—0
S:(f,T) = 7z3’§ f X (f,T)

wy | oubstrate [Liu, Thorne 2000]

* |lower temperature T
* increase beam diameter w
* decrease mechanical loss ¢
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Thermal noise issues

 Temperature fluctuation triggered thermal noise

* mechanism:
— at given temperature T fluctuation always oT

— material properties influence read out of laser beam (e.g. coefficient
of thermal expansion determines position of surface, refractive index
determines phase of transmitted light)

— Fluctuations of temperature couple directly into the phase read out
= noise
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Thermal noise issues

 Temperature fluctuation triggered thermal noise

 example:

transmissive optics reflective optics
(e.g. ITM)

refractive index is temperature
dependent (dn/dT)
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Thermal noise issues

* in both case — cryogenic operation
— reduction of thermal energy

— reduction of ,,coupling coefficients“ by means of 37 law of thermo-
dynamics

,All temperature dependent parameters become constant
towards T =0 K.”

 However: high laser power desired for reduction of quantum noise
— optimization process needed
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Thermal noise issues

 unknown parameters?
— thermal parameters
— mechanical parameters
— optical parameters

* measurement of these parameters needed
— thermal conductivity (collaboration with KAGRA people)
— Q-factor measurements for mechanical loss spectrocopy
— dn/dT measurement
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Thermal conductivity of Sapphire fibers

* Heat extraction is cruicial for cryogenic operation.
 KAGRA uses sapphire fibers to remove heat from the mirrors.

« example: check of influence of surface quality

rough surface: polished surface:
phonon gets scattered at surface phonon gets reflected at surface

* investigation in collaboration with Nikhef (surface quality) and
ICRR (test of nailhead fibres)
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Thermal conductivity of Sapphire fibers

Temperature
Sample Temperature Temperature Controlled
Heater Sensor 1 Sample Sensor 2 Heat Sink

\ |

[credits to G. Hofmann, C. Schwarz]
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Thermal conductivity of Sapphire fibers
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Thermal conductivity of Sapphire elements
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Mechanical loss spectroscopy

* mechanical loss is important parameter for thermal noise
estimates, also gives insight into the solid state physics of the

sample

e cryogenic mechanical spectroscopy is used to study this parameter
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Mechanical loss spectroscopy

Freely decaying ring down
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* Aim: measuring intrinsic loss — avoid external dissipation —
sophisticated setups are needed

thin wire suspension thin silicon blades
for bulk materials used for coating and surface
investigations
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Mechanical loss spectroscopy

* f,and T are changed to obtain a mechanical loss spectrum
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* collaboration with IGR at Glasgow
* aim: understanding the origin of the loss to avoid it
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Mechanical loss spectroscopy
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Mechanical loss spectroscopy

* Questions that can be answered with this technique:
— optimum operational temperature
— active or inactive impurities

— methods to lower the mechanical loss

— evaluation of the Brownian thermal noise without need to directly
measure it
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Silicon as a baseline material for ET-LF

* low mechanical loss
* high thermal conductivity
* good mechanical stability

* many existing techniques (growing, polishing, cutting) due to
semiconductor industry

e available in large size and high quality (up to 450 mm diameter)

 however: not transparent at 1064 nm — change to 1550 nm
needed — optical parameters need to be investigated
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Thermo-refractive noise in GW detectors

 Temperature fluctuations cause the refractive index to fluctuate as
well - how much, expecially at low temperatures?

e possible optics: BS, ITM
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Thermo-refractive coefficient of silicon

* Thermo-refractiv coefficient dn/dT needed at cryogenic
temperatures and at 1550 nm
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Thermo-refractive coefficient of silicon

e Extraction of dn/dT reveales ist temperature dependence
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Optical absorption of silicon

* Cryogenic operation needed for crystalline materials

— high thermal condcutivity of suspension elements needed (seen
before)

— low optical absorption needed in transmissive components
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Optical absorption of silicon

* band structure of semiconductors

single atoms atoms in a solid

o
I

VB

discrete energy levels with energy levels split (Pauli principle),
forbitten gaps in between formation of bands
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 band structure of semiconductors — direct and indirect transitions
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Electronical band structure of silicon. The maximum of the
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Electronical band structure of gallium arseide. The moaximonm
of the valence band occurs at the ¢ point as well as the
minimurm of theconduction band.

Direct fransiions from the valence band to the conduction
band demand Ok = 0 and are possible as soon as the photon
energy islarger than 1,42 e { gap energy],
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 band structure of semiconductors — direct and indirect transitions
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Optical absorption of silicon

* Band-band-absorption
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Optical absorption of silicon

* Band-band-absorption

— Photon energy has to be near the gap energy
— Phonon assisted absorption is temperature [ ]

dependent.

-->

— use of light beyond the gap (e.g. 1550 nm)
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Optical absorption of silicon

* Free carrier absorption

— origin of carriers

e ¢

typ. 45 meV

Free carriers are released from
doping states. Necessary energy is
taken from thermal bath.
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Optical absorption of silicon

* Free carrier concentration as function of temperature
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* Free carrier concentration drops very rapidly (1/cm? at 150 K)
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Optical absorption of silicon

* Free carrier concentration as function of temperature
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* Very low temperatures needed (below 50 K) to get rid of FCA!
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Optical absorption of silicon

* freeze-out of carriers can be observed electronically by means of
resistivity measurements
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Optical absorption of silicon

* However:

Optical absorption is observed to be nearly
temperature independent but scales with
concentration of doping.

 Further studies needed... [ ® J

* Possible mechanism due to the optical
absorption from the ground state of the
dopand into the conduction band.
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Optical absorption of silicon

 additional noise sources can arise from free carriers

* free carrier density influences the refractive index

— fluctuating carrier density (thermal, via absorption, etc.) causes
fluctuations of refractive index

— refractive index change causes ,,carrier noise”

» further investigations are ongoing

Ronny Nawrodt, 06/12/2013 GW Exchange Meeting - Tokyo Institute of Technology 43 / 44



Friedrich-Schiller-Universitat Jena

Summary and Conclusions

* Material investigations are important for future cryogenic GW
detectors due to the unknown parameters.

* Silicon and sapphire are promising candidate materials for
cryogenic applications and provide suitable properties.

* Silicon as a test mass material brings free carriers into the
,2thermal noise game” -> new noise sources ?
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