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Overview 

 

• Introduction 
 

• Thermal noise issues 

– Thermal noise in GW detectors 

– Important material properties for thermal noise estimates 
 

• Optical properties of silicon as a candidate material for the 
Einstein Telescope 
 

• Conclusions and Summary 
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Introduction 

• GW detectors are amongst the most sensitive instruments ever 
built. 

• most limitations: intrinsic noise sources 

• technical noise minimized as good as possible 

 

• noise limitations due to: 

– seismic noise 

– thermal noise  

– quantum noise 
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Noise in interferometric GWDs 

simplified interferometric GW detector: 
 
seismic noise 
thermal noise  
quantum noise 
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Introduction 

• limits of GW detectors 

• use of cryogenic temperatures to overcome thermal noise issues 

 

• no feeling for temperature regime  investigations of materials 
needed as new physics has to be explored 

 

• main issues:  

– thermal noise 

– optical properties (mainly absorption) 
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Thermal noise in GW detectors 

𝑓 

𝑆ℎ 

Detection band 

10 Hz 1 kHz 

mirror thermal noise 

• thermal noise of optical components 
is a limiting factor at the most 
sensitive part (together with 
quantum noise) 
 

• thermal noise of the suspension 
elements limits the low temperature 
performance of the detector 
together with quantum noise 
 

-> 2 aims: reduction + understanding 
 the sources of noise 
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Thermal noise issues 

 

• What is thermal noise for us? 

– „Thermal noise“ throughout this talk does not mean the whole 
thermal noise of the optics but the part that is seen by the laser 
beam. 

 

 

• types of thermal noise 

– triggered by thermal energy kBT 

– triggered by temperature fluctuations T that couple via temperature 
dependence of material properties  
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Thermal noise issues 

• Thermal energy triggered noise – Brownian thermal noise 

VIDEO 
(not included in online version) 

 
- size too large- 
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Thermal noise issues 

• Thermal energy triggered noise – Brownian thermal noise 

 

• example:  thermal noise of a mirror substrate 
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[Liu, Thorne 2000] 

• lower temperature T 
• increase beam diameter w 
• decrease mechanical loss  
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Thermal noise issues 

amorphous materials 
show a large loss peak at 
low temperatures 

crystalline materials well 
suited for cryogenic use 
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Thermal noise issues 

• Temperature fluctuation triggered thermal noise 

 

• mechanism: 

– at given temperature T fluctuation always T 

– material properties influence read out of laser beam (e.g. coefficient 
of thermal expansion determines position of surface, refractive index 
determines phase of transmitted light) 

 

– Fluctuations of temperature couple directly into the phase read out 

  = noise 
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Thermal noise issues 

• Temperature fluctuation triggered thermal noise 

 

• example: 
 

 transmissive optics   reflective optics 

 (e.g. ITM) 

 

 

refractive index is temperature  
dependent (dn/dT) 

CTE determines front face 
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Thermal noise issues 

 

• in both case – cryogenic operation 

– reduction of thermal energy 

– reduction of „coupling coefficients“ by means of 3rd law of thermo-
dynamics 

 

 „All temperature dependent parameters become constant  

 towards T = 0 K.“ 

 

• However: high laser power desired for reduction of quantum noise 
 optimization process needed 
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Thermal noise issues 

 

• unknown parameters? 

– thermal parameters  

– mechanical parameters 

– optical parameters 

 

• measurement of these parameters needed 

– thermal conductivity (collaboration with KAGRA people) 

– Q-factor measurements for mechanical loss spectrocopy 

– dn/dT measurement 

– … 
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Thermal conductivity of Sapphire fibers 

• Heat extraction is cruicial for cryogenic operation. 

• KAGRA uses sapphire fibers to remove heat from the mirrors. 

 

• example: check of influence of surface quality 

 

 

 

 

 

• investigation in collaboration with Nikhef (surface quality) and 
ICRR (test of nailhead fibres) 

rough surface: 
  phonon gets scattered at surface 
 

polished surface: 
  phonon gets reflected at surface 
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Thermal conductivity of Sapphire fibers 

Sample 
Heater 

Temperature 
Sensor 1 Sample 

Temperature 
Sensor 2 

Temperature 
Controlled  
Heat Sink 
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Thermal conductivity of Sapphire fibers 

T1 T2 THeater THeat Sink 

temp 

position 

P1 < P2 < P3 < P4 

ΔT1 < ΔT 2 < ΔT 3 < ΔT 4 

ΔT = T1 - T2  
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Thermal conductivity of Sapphire elements 
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Mechanical loss spectroscopy 

• mechanical loss is important parameter for thermal noise 
estimates, also gives insight into the solid state physics of the 
sample 

 

• cryogenic mechanical spectroscopy is used to study this parameter 
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Mechanical loss spectroscopy 
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Mechanical loss spectroscopy 

Freely decaying ring down 
of the oscillation at 𝑓0: 

 

𝑥 𝑡 = 𝑥0 exp
−𝑡

𝜏
cos𝜔0𝑡 

 

Ratio of dissipated to 
stored energy per cycle 
yields the mechanical loss: 
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Mechanical loss spectrocopy 

• Aim: measuring intrinsic loss  avoid external dissipation  
sophisticated setups are needed 

thin wire suspension 
for bulk materials 

thin silicon blades 
used for coating and surface 
investigations 
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Mechanical loss spectroscopy 

• f0 and T are changed to obtain a mechanical loss spectrum 

 

 

 

 

 

 

 

 

• collaboration with IGR at Glasgow 

• aim: understanding the origin of the loss to avoid it 

oxygen changes positions within the Si 
 relaxation  damping at 125 K 

[Schwarz et al. SSP 184 (2012)] 
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Mechanical loss spectroscopy 
thermal oxide 

annealed tantala 

ion-implanted tantala 

sapphire bulk 
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Mechanical loss spectroscopy 

• Questions that can be answered with this technique: 

 

– optimum operational temperature 

– active or inactive impurities 

– methods to lower the mechanical loss 

 

– evaluation of the Brownian thermal noise without need to directly 
measure it 
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Silicon as a baseline material for ET-LF 

• low mechanical loss 

• high thermal conductivity 

• good mechanical stability 
 

• many existing techniques (growing, polishing, cutting) due to 
semiconductor industry 
 

• available in large size and high quality (up to 450 mm diameter) 
 

 

• however: not transparent at 1064 nm  change to 1550 nm 
needed  optical parameters need to be investigated 
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Thermo-refractive noise in GW detectors 

• Temperature fluctuations cause the refractive index to fluctuate as 
well  how much, expecially at low temperatures? 

• possible optics: BS, ITM 
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Thermo-refractive coefficient of silicon 

• Thermo-refractiv coefficient dn/dT needed at cryogenic 
temperatures and at 1550 nm 

Investigation of transmission 
through a parallel sample 
during cooling 

fringes contain both CTE and dn/dT 
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Thermo-refractive coefficient of silicon 

• Extraction of dn/dT reveales ist temperature dependence 
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Optical absorption of silicon 

 

• Cryogenic operation needed for crystalline materials 

 

– high thermal condcutivity of suspension elements needed (seen 
before) 

– low optical absorption needed in transmissive components 

 
P0 

Ptrans 
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Optical absorption of silicon 

• band structure of semiconductors 

single atoms atoms in a solid 

discrete energy levels with 
forbitten gaps in between 

energy levels split (Pauli principle), 
formation of bands 

CB 

VB 
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Optical absorption of silicon 

• band structure of semiconductors – direct and indirect transitions 
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Optical absorption of silicon 

• band structure of semiconductors – direct and indirect transitions 

transition probablility low 
(3 particles involved) 

transition probablility high 
(only 2 particles involved) 
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Optical absorption of silicon 

conduction  
band 

valence  
band 

interband absorption 
(band-band abs.) 

intraband absorption 
(free carrier abs.) 
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Optical absorption of silicon 

• Band-band-absorption  
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Optical absorption of silicon 

• Band-band-absorption 
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Optical absorption of silicon 

• Band-band-absorption 

 

– Photon energy has to be near the gap energy 

– Phonon assisted absorption is temperature 

 dependent. 

 

 

– use of light beyond the gap (e.g. 1550 nm) 
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Optical absorption of silicon 

• Free carrier absorption 

 

– origin of carriers 

 

 

Free carriers are released from 
doping states. Necessary energy is 
taken from thermal bath. 

typ. 45 meV 
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Optical absorption of silicon 

• Free carrier concentration as function of temperature 

 

 

 

 

 

 

 

 

 

• Free carrier concentration drops very rapidly (1/cm3 at 150 K) 

undoped silicon 
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Optical absorption of silicon 

• Free carrier concentration as function of temperature 

 

 

 

 

 

 

 

 

 

• Very low temperatures needed (below 50 K) to get rid of FCA! 

doped silicon 
ND – doping concentration 
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Optical absorption of silicon 

• freeze-out of carriers can be observed electronically by means of 
resistivity measurements 
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Free carriers are bound to 
their ground state at low  
temperatures. 
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Optical absorption of silicon 

• However:  

 

Optical absorption is observed to be nearly 
temperature independent but scales with 
concentration of doping. 

 

• Further studies needed… 

 

• Possible mechanism due to the optical 
absorption from the ground state of the 
dopand into the conduction band. 
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Optical absorption of silicon 

• additional noise sources can arise from free carriers 

 

• free carrier density influences the refractive index 

 

– fluctuating carrier density (thermal, via absorption, etc.) causes 
fluctuations of refractive index 

– refractive index change causes „carrier noise“ 

 

 

• further investigations are ongoing 
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Summary and Conclusions 

 

• Material investigations are important for future cryogenic GW 
detectors due to the unknown parameters. 

 

• Silicon and sapphire are promising candidate materials for 
cryogenic applications and provide suitable properties. 

 

• Silicon as a test mass material brings free carriers into the 
„thermal noise game“ -> new noise sources ? 

 

 


