JGW-T1301987-v2

15 Nov 2013

# Finite Element Analysis of Heat Links Using COMSOL Multiphysics

Takanori Sekiguchi Department of Physics, University of Tokyo

## 1. Introduction

#### 1.1. Purpose and Scope

有限要素解析ソフトウェアとして COMSOL Multiphysics (Ver.4.2)を利用したヒートリンクの 機械的振動伝達特性の計算方法を本稿にて述べる。

### **1.2. Applicable Documents**

• "Finite elemental analysis of heat links for LCGT", Y. Aso, JGW-G1000108-v4

### 1.3. Version History

- 14/11/2013, v1, initial release by T. Sekiguchi
- 15/11/2013, v2, add "damping" setting

## 2. Calculation Method

#### 2.1. Abstract



Fig.1: ヒートリンク

上図のようなヒートリンクの端点から端点までの機械的伝達関数を計算する。ヒートリン クの長さ(~m)に対して線径が十分に小さい(~mm)ため、3次元要素の有限要素解析では要 素数が多くなりすぎて計算に時間が掛かる。COMSOL には構造解析ツールの中に 1 次元要 素を計算するためのツール (Beam) があるので本計算ではそれを使用し計算時間を短縮す る。線径 d の円断面のワイヤーが N 本寄り集まったものを想定すると、ヒートリンクは断 面 2 次モーメント Izz = Nπd<sup>4</sup>/64、線密度  $\sigma$ = N $\rho$ md<sup>2</sup>/4 の弾性線として扱える。 ヒートリンクの両端にヒートリンク自身の質量に比較して十分に大きな質量 M を取り付け、 片方の端点に振幅 F<sub>ex</sub>の強制振動を加える。質量が十分に大きくヒートリンクからの力の寄 与が十分小さければ、強制振動を加えた端点に生じる加速度振幅は A<sub>in</sub>=F<sub>ex</sub>/M となる。有限 要素解析でもう一方の端点の加速度振幅を求め、A<sub>in</sub>で割ることで周波数応答を計算する。

細い線を使用した場合ヒートリンクは重力でたわみ変形する。重力変形した状態での周波 数応答を計算するやり方は G1000108 にあるが、どうも 1 次元要素のモデルではこの方法 では上手く計算できないようなので、本計算では重力変形による効果は無視する。

#### 2.2. Setting

以下、ヒートリンク伝達関数計算モデルの構築方法を説明する。

- (1) Model Wizard より 3D を選択し、Structural Mechanics (構造力学)の中から Beam を選 択する。Study Type は Frequency Domain を選択する。
- (2) Geometry として Parametric Curve を選択し、長半径を a、短半径を b としてパラメトリック曲線を x = a\*cos(s), y=0, z=-b\*sin(s)と設定する。また図形の中心を(a,0,0)とし片方の端点が座標原点に来るようにする(Fig. 2)。



Fig.2: Geometry 設定

 (3) Beam の Elastic Material Mode において、Specify から Young's modulus and Poisson ratio を選択する。Material にてヤング率・ポワソン比・密度を設定する(純アルミのデータ: E = 70 [GPa], v=0.34,  $\rho = 2.7$  [g/cm<sup>3</sup>])

- (4) Elastic Material Mode に Damping を追加し、Damping type から Isotropic loss factor を選 択する。Material にてロスアングルを設定する(純アルミとして φ=100 を仮定)。
- (5) Cross Section Data において Cross Section Definition を User defined とし以下を設定する。 Area: Nπd<sup>2</sup>/4

Moment of inertia about z(y)-axis:  $N\pi d^4/64$ 

Distance to shear center in local z(y) direction: 0

Torsional constant:  $N\pi d^4/32$ 

Bending stress evaluation points: From specific points

Evaluation points in local system: (d/2,0), (0,d/2), (-d/2,0), (0,-d/2)

Torsional section modulus:  $N\pi d^3/16$ 

Max shear stress factor in z(y) direction: 4/3

- (6) Section Orientation において orientation vector を選択し、(0,1,0)をローカルな y 軸に設 定する。
- (7) Point Massを追加しヒートリンク両端に質量M(~1e8)および集中慣性モーメントI<sub>xx</sub>, I<sub>yy</sub>, I<sub>zz</sub> (~1e8)を設定する。
- (8) Point Load を追加し端点 1 に強制振動を加える。強制振動を加える方向を選択するパラ メータ cex を作成し、cex=1, 2, 3 の時にそれぞれ x, y, z に強制振動が加わるよう数式を 入力する(Fig.3)。

|        | ieters       |                         |                   |     |
|--------|--------------|-------------------------|-------------------|-----|
| Parame | ters         |                         |                   |     |
| Name   | Expression   | Value                   | Description       | *   |
| rho_al | 2.7[g/cm^3]  | 2700.0 kg/              | density           |     |
| phi_al | 1*10^(-2)    | 0.010000                | loss angle        |     |
| A      | N*pi*d^2/4   | 7.8540e-0               | area              |     |
| I      | N*pi*d^4/64  | 1.9635e-1               | MoI of area       |     |
| J      | N*pi*d^4/32  | 3.9270e-1               | polar MoI of are  |     |
| Zp     | N*pi*d^3/16  | 3.9270e-1               | torsional section |     |
| м      | 1e8[kg]      | 1.0000e+0               | mass              |     |
| Ixx    | 1e8[kg*m^2]  | 1.0000e+0               | MoI               |     |
| g      | 9.81[m/s^2]  | 9.8100 m/s <sup>2</sup> | gravity constan   |     |
| Mr     | 50[kg]       | 50.000 kg               | real mass         | III |
| fexx   | fex*(cex==1) | 1000.0 N                |                   |     |
| fexy   | fex*(cex==2) | 0 N                     |                   |     |
| fexz   | fex*(cex==3) | 0 N                     |                   | -   |
|        |              |                         |                   | Ŧ   |

| @ Point Load                |                              |  |  |  |  |  |
|-----------------------------|------------------------------|--|--|--|--|--|
| Point Selection             |                              |  |  |  |  |  |
| Selection: Manual           | •                            |  |  |  |  |  |
| 1                           | °80 ↔<br>[6] —<br>(0)<br>(0) |  |  |  |  |  |
| Override and Contribution   |                              |  |  |  |  |  |
| Equation                    |                              |  |  |  |  |  |
|                             |                              |  |  |  |  |  |
| Coordinate system:          |                              |  |  |  |  |  |
| Global coordinate system    | •                            |  |  |  |  |  |
|                             |                              |  |  |  |  |  |
| Point load:                 |                              |  |  |  |  |  |
| F <sub>P</sub> User defined | •                            |  |  |  |  |  |
| fexx                        | x                            |  |  |  |  |  |
| fexz                        | y N<br>z                     |  |  |  |  |  |

Fig.3 強制振動の設定

(9) Mesh の切り方として Free Quad を選択し以下の Distribution を設定する。

Distribution property: Predefined distribution type

Distribution Method: Arithmetic sequence

Symmetric distribution および Reverse direction にチェックを入れる。これにより両端に 細かいメッシュを設定できる(Fig.4)。



Fig.4 メッシュの切り方

- (10) Frequency Domain スタディで周波数ステップを設定する。
   10^{range(fmin,(fmax-fmin)/(fstep-1),fmax)}としてパラメータ上で fmin, fmax, fstep を 変更できるようにしておくと後から調整しやすい。
- (10) パラメータを振って伝達関数を比較する時は Parametric Sweep を使用する。
- (11) Global definition において以下の variable を設定する。

omg = mod1.beam.omega

```
acc = mod1.beam.u_ttx*(cex==1)+mod1.beam.u_tty*(cex==2)+mod1.beam.u_ttz*(cex==3)
kspr = -acc*M^2*omg^2/fex
```

tf = acc\*M/fex\*M/Mr

kspr: ヒートリンクの実効ばね定数の周波数依存性

tf: 質量 Mr のマスを付けた場合のヒートリンクの振動伝達関数

- (12) 計算を実行する。
- (13) 結果に 1D Plot Group を追加し、y-axis data として abs(tf)や abs(kspr)などを入力して 伝達関数の絶対値やばね定数の周波数依存性などをプロットする(Fig.5)。



Fig.5: 計算結果の例