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(1) Lectures on gravitational waves and suspension (G. Hammond) 

The basic lectures on the field of gravitational waves and their detection gave a nice overview on 

how the different research topics are connected in the direction of a direct detection of gravitational 

waves. I realized many links within different topics of research. But the lecture also raised some 

questions to me. 

 The multipole expansion for GW gives a quadrupole moment in lowest order. This is 

connected to a leading potential term of the form 1/r^3. But the amplitude of a gravitational 

wave scales with the inverse distance from the source  1/r (see e.g. book of Saulson). 

 For bar detectors the question arose how to apply a direct noise calculation scheme 

following Levin to their geometry. It would also be interesting to find former publications on 

this field. 

 Calculation of the suspension noise: Using the direct approach by Levin, Giles showed the 

calculating of dissipation in the fibres. There the fibre was cut into small sections with 

constant diameter. Each section contained an own thermoelastic loss parameter due to the 

cancellation proposed by Cagnoli and Willems. Further due to the displacement every section 

shows a different total elastic energy. Finally the total loss was obtained by dividing with a 

constant dilution factor. Should not this dilution factor also depend from the position in the 

fibre? 

(2) Fluctuations in non-equilibrium steady state (Y. Shikano) 

As in a cryogenic interferometer the test mass is thermally connected to the heat sink mainly via the 

suspension a temperature gradient will emerge along these fibres. This stationary situation does not 

represent an equilibrium state any more. Thus one is especially interested in how this change 

influences the thermal noise level of the suspension in cryogenic detectors and if and how Levin’s 

direct approach has to be modified. 

Yusuke’s talk addressed the fundamentals on the fluctuations of the non-equilibrium steady state 

(NESS) systems. There I learned a lot about the Fokker-Planck equation as a helpful tool in statistical 

physics. Especially interesting is its analogy to the traditional Langevin equation. But it seems that the 

Fokker-Planck equation is suited to obtain the fluctuation-dissipation-theorem in the case of NESS. 

Also the discussion in terms of a probability flow helped me to get deeper into this topic. 

(3) Thermo-optic noise by Evans et al. 

In a discussion with Kentaro we found a nice explanation of how to apply virtual loads to a multilayer 

coating on top of a substrate. In terms of thermoelastic noise a distributed virtual force should be 

applied to any interface in the layer stack (probing not only the mirror surface but also the individual 

layer thicknesses) as well as to the substrate. But in the work of Evans et al. only a single force is 

applied to the top of the layer stack. Instead an additional entropy is applied to the individual coating 

layers. This effect cares for the thickness change of each layer and is a good approximation for thin 

coatings. 
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Jumpei Kato

I got interested in fluctuation in a non-equilibrium steady state (NESS) whose lecture was given by

Yutaka. Yutaka told us the fundamental knowledge of the fluctuation in an equilibrium state and in a

NESS. Masayuki and I summarized Yutaka’s talk on the last day of the workshop. After the workshop,

I followed the Yutaka’s calculation again. Then, I noticed mistakes of my talk. In this report, I will

summarize the fluctuation theory again, and also correct the mistakes.

When we consider the dynamics with damping a and random force in a long-time scale, the most

fundamental equation is the Langevin one.

Ẋ(t) = F (X(t)) + ξ, (1)

where X(t) is a generalized position, F (x) is a generalized force, and ξ is random force. When the

system is in equilibrium, the Langevin equation is equivalent to the Fokker-Plank(FK) equation. The

FK equation describes a probability distribution of the system.

To prove the equivalence, we need four assumptions.

1. ξ(t) is white noise. That is, ξ(t) is

⟨ξ(t)⟩ = 0, (2)

⟨ξ(t)ξ(t′)⟩ = Dδ(t− t′). (3)

D is some quantity like the variance.

2. ξ(t) and X(t) are statistically independent. Namely, they do not have a correlation.

⟨ξ(t)X(t′)⟩ = 0, (for ∀t > t′). (4)

3. P (x, t) has a non-trivial solution. For this assumption, p needs to be 0 at the boundaries. Yutaka

did not mention it but Masayuki and I did.

4. No probability flow at the boundaries. We define the probability flow J(x, t) as

∂J(x, t)

∂x
:=

∂P (x, t)

∂t
. (5)

At x → ±∞ , J(x, t) should vanishes.

A system in an equilibrium state satisfies these assumptions. After calculation using the FK equation,

we find

F =
D

2

∂S(x)

∂x
(6)

where S(x) = logP (x) . Since we consider the equilibrium state, i.e. t → ∞ , P and S are independent

of time. We can determine the probability distribution P from (6). However, as Yutaka said, P , and
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thus S, should be obtained from the result of statistical mechanics. Therefore, we should not consider

(6) as the equation to determine S. This equation should be interpreted as the one to obtain D.

We are interested in the auto-correlation function of X i.e. ⟨X(t)X(t+ τ)⟩ . ⟨X(t)X(t+ τ)⟩ corre-

sponds to ⟨Ẋ(t)Ẋ(t+ τ)⟩ in the Fourier domain except for the factor (1/2πf)2 . Thus, we start from

the Langevin equation.

⟨Ẋ(t)Ẋ(t+ τ)⟩ = ⟨(F (t) + ξ(t)) (F (t+ τ) + ξ(t+ τ))⟩
= ⟨F (t)F (t+ τ)⟩+ ⟨F (t)ξ(t+ τ)⟩+ ⟨F (t+ τ)ξ(t)⟩+ ⟨ξ(t)ξ(t+ τ)⟩
= ⟨F (t)F (t+ τ)⟩+Dδ(τ). (7)

The second and third terms vanish because F and ξ are statistically independent. Moreover, Yutaka

said that the first term vanished but I forget the reason and I fail to prove that. When the first term is

absent, we obtain FDT in the time domain as

⟨Ẋ(t)Ẋ(t+ τ)⟩ =
⟨

2F

∂S/∂x

⟩
δ(τ). (8)

Especially when we assume the Boltzmann system with damping, that is, F = −mγV and S(v) =

−mv2/2kbT where V is the average of v, we find the familiar FDT in the frequency domain,

SX(f) =
1

(2πf)2
4γkbT. (9)

Notice that this SX is one sided power spectrum of X.

Let us consider the system in a NESS. What should be modified? In the NESS case, the FP equation is

invalid because the assumption 3 and the assumption 4 will break. Therefore, D cannot be determined.

However, the Langevin equation is still valid so that (7) holds in the NESS. I think ⟨F (t)F (t+ τ)⟩ still

vanishes because F does not change from the equilibrium case but I am not sure. I hope someone can

prove it for me. I said that ⟨F (t)F (t+ τ)⟩ would be modified in the talk but I could have been wrong.

In the NESS, we lose the method to obtain D. The conclusion is worse than I said before.

For future work, I need to check the proof of equivalence of the Langevin equation and the FK equation.

I could find another equation to determine D.
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Shiori Konisho 

 

○Measuring the optical absorption: Jerome Degallaix 

In the lecture, we learned how to measure the optical absorption.  

With two lasers the measuring point was chosen. The pump laser was locked 

by a chopper.  

I was very interested in the lecture since it was the first time for me to 

learn about measuring the optical absorption. And it was a good opportunity 

for me to see Jerome’s experiment. 

 

 

○Paper review  

   We read some papers as homework. And Daniel gave us a lecture about 

the kinds of the thermal noise. Finally we draw noise spectrum density of 

thermal noises. 

   Before the class, I didn’t catch the difference between thermo-elastic noise 

and thermo-refractive noise. But he told us the meanings with some pictures 

so I could image well. And I made a presentation of a paper. It was a nice 

experience for me to speak in English. 

 

○Experiment 

I and Ms. Kumeta joined with the group in which they measured the 

temperature distribution. And we learned how to measure the loss of 

substrates.  

I was so interested in the difference between Jerome’s method and group’s 

one. In the group’s one, they used only one laser. I wish we had more time 

to do the experiment. 



 

 

 

 

Before this workshop, I did not know the thermal noise at all. I had a very valuable experience. 

1. Measuring the optical absorption 

In this lecture, I learned many things. For example, 

what the optical absorption is, why we should take care 

of it, how to estimate it, and how to measure it. In 

particular, the method to measure the light absorption for 

each point of the coating by two beams was impressive. 

Jerome also showed me the experiment and that was 

very educational for me. 

2. COMSOL 

Simulation software “COMSOL” can calculate the temperature distribution, the resonance 

frequency and the loss angle of an optical component. COMSOL uses the finite element method 

(FEM). Not having COMSOL in Japan, I would like to do similar simulation using ANSYS. 

3. Short lab work 

I participated in an experiment of the measurement of loss 

angle. In this experiment, we measured the ring-down time 

of a cantilever. When there is a loss, the amplitude 

decreases gently. This experiment was very interesting for 

me because it was my first time to do a cryogenic 

experiment.  In Japan, I use a breadboard for OMC experiment. It may be necessary to do the loss 

measurement of the breadboard with the experiment like this or the simulation using the FEM. 

4. Application to Silicon / Sapphire 

After Daniel’s lecture of thermal noise, we were divided into some groups and calculated the 

spectral density of noise. Rebecca and Rene and I calculated bulk Brownian noise of silicon and then 

that of sapphire to compare the noise levels.  

Then Rene taught me how to use MATLAB. 

After that we compared our result with the 

results of the other teams (Bulk thermo-elastic, 

Coating Brownian, etc.). 

Thermal noise workshop 2013 report 

                                              
Ayaka Kumeta 

bulk Brownian noise 
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Masayuki Nakano
masayuki@icrr.u-tokyo.ac.jp

October 7, 2013

1 Thermal fluctuation in non-equilibrium steady state

We had the lecture of thermal fluctuation in non-equilibrium steady state by Yutaka Shikano. I will
summarize his lecture and mention about what Jumpei and I explained at the last of workshop. And also
I found some problem in our explanation, so I will mention about that. In below discussion, I possibly
made a mistakes, so if you find any problem, please let me know.

The lecture started with the Langevin equation.

Ẋ = F (X(t)) + ξ(t) (1.1)

where X is displacement, velocity, or any parameter of the particle, and ξ is the fluctuation force . If you
write F (x) using the potential of the system S(x), we can write like

F (x(t)) = −L
∂S

∂x
(1.2)

We can calculate the response of Ẋ for the excitation force

δẊ

δfexc
=

δF (x)

δfexc

= L

(
δ

(
∂S(x)

∂x

)
/δfexv

)
= L (1.3)

There is another important equation in our lecture. That is Fokker-Plank eq.

∂P (x, t)

∂t
=

(
−∂F (x)

∂x
+

D

2

∂2

∂x2

)
P (x, t) (1.4)

If we assume < ξ(t)ξ(t+ τ) >= Dδ(τ), and the Fokker-Plank eq and Langevin eq(1.1) are equivalent, we
can get the relationship between F (x) and S(x) = − logP (x), where P(x) is the probability distribution,

F (x) =
D

2

∂S(x)

∂x
(1.5)

So in this case, D/2 = L. Also we have the relation between the dissipation D and the self correlation
function of Ẋ like

< Ẋ(t)Ẋ(t+ τ) >=< F (t)F (t+ τ) > +Dδ(τ). (1.6)

if τ = 0
< Ẋ(t)2 >=< F (t)2 > +D. (1.7)

We can get the self correlation function of Ẋ from that response,

C(τ) =< Ẋ(t)Ẋ(t+ τ) >

=< F (t)F (t+ τ) > +D (1.8)

=< F (t)F (t+ τ) > +2R (1.9)

where R is the response of Ẋ.



2 APPENDIX

In Yutaka’s lecture , he assumed the Fokker-Plank eq(1.4) and Langevin eq(1.1) are equivalent in
equilibrium state and also non-equilibrium steady state. And because < F (t)F (t+τ) > is 0 in equilibrium
state and is not 0 in non-equilibrium steady state, the fluctuation of Ẋ in non-equilibrium steady state
become larger than in equilibrium state by < F (t)F (t+ τ) >. If my understanding is correct, this is the
conclusion of his lecture.

But as Jumpei and I explained at last of the workshop there was the problem. For the equivalence of
two equation, we need the boundary condition,

P (±∞) = 0 (1.10)

∂P

∂x
(±∞) = 0 (1.11)

But in non-equilibrium steady state, this boundary condition cannot be satisfied always. In this case we
cannot use the Fokker Plank eq. So in non-equilibrium steady state we cannot use equation(1.8) and we
have to use the equation(1.7). Although if you compare two state in equation(1.7) the extra fluctuation
in non-equilibrium steady state will come from < F (t)F (t+ τ) >. This is the point which Jumpei and I
mentioned.

But I found this discussion has two wrong points. First one is that we should consider about the
difference of response between two states. The system is different between two system, so the response
of system is maybe different.

And also there is the problem in our discussion about < F (t)F (t + τ) >. How we can say that
this term is zero in equilibrium state? Yutaka explained, we should think about the space dependence
somehow, so we should take ensemble average. And then the first term should go to zero. (Also we
can see what he wrote on black board in this discussion in the Ronny’s photo MG 0538). But he didn’t
explain why the first term go to zero if you take an ensemble average (or I just didn’t understand or miss
the point). I calculate this term again and my conclusion is that this term is not always zero.

You can easily calculate in the case of the Brownian particle. As Yutaka’s lecture in case of Brownian
particle F (v) = −(γ/m)v. So < F (t)2 > is calculated like,

< F (t)2 >=
γ2

m2
< v(t)2 > (1.12)

And you know < v(t)2 > cannot be zero obviously.
Also I calculated < F (t)2 > by taking ensemble average. For that calculation, first of all we should

think about what does ”< F (t)2 >” means. Actually F is the function of x and not the function of time
in usual case. But if we consider about the particle, and that position (or velocity) is the function of
time, then F become the function of time. So it’s better to write this term down like F (x(t)).

Now we can consider about ”time average”. The time average of F (x(t))2 for one particle should
be same as the ensemble average of F , (if ergodicity is satisfied. And the particle has the probability
distribution P (x), so the ensemble average should be calculated like,

F (x)2 =

∫ ∞

−∞
F (x)2P (x)dx (1.13)

I calculated with this equation and got same result as from eq(1.11). I put about detail of calculation in
appendix.

Summarizing above discussion, I think when we think about the difference of thermal noise between
two states, we have to consider two effects. One is the difference of the response of the system for external
force. And another thing is the difference of < F (t)2 >. I don’t get anything about these differences yet.
So next step is to estimate these differences somehow.

2 Appendix

The equation of motion of Browning particle is

mẍ = −γx+ ξ(t) (2.1)
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2 APPENDIX

and from this EoM, you can get the Langevin eq for velocity.

v̇ = − γ

m
v +

1

m
ξ (2.2)

from eq(2.2), the spectrum of v is

v̇(ω) =
1

iω + (γ/m)
ξ(ω)2 (2.3)

we assume ξ is white noise and the power is D/m2, so the power spectrum density of v is

|v(ω)|2 =
1

ω2 + (γ/m)2
D

m2
(2.4)

Using Percival theorem we can get the time average of v2

< v2 > =
1

2π

∫ ∞

−∞
|v(ω)|2dω

=
D

2mγ
(2.5)

From eq(1.11) we get < F (t)2 >

< F (t)2 >=
Dγ

2m3
(2.6)

And next I will calculate from eq(1.12). The Brownian particle have the velocity distribution

P (v) =

√
m

2πkBT
e
− mv2

2kBT (2.7)

So we can calculate < F (t)2 > like

< F (t)2 > = F (x)2

=

∫ ∞

−∞
F (x)2P (x)dx

=

∫ ∞

−∞
(− γ

m
v)2

√
m

2πkBT
e
− mv2

2kBT dx

=
γ2kBT

m3
(2.8)

As Yutaka7s lecture D = 2kBTγ. So the result of two calculation are same.
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Kenji Ono

T H E R M A L  N O I S E  W O R K S H O P  2 0 1 3  R E P O RT

FEA(Comsol):Daniel and short lab work

In this lecture, I learned Finite Element Analysis(FEA); overview of the 
theory and methods of analysis. In the analysis part, we used FEA 
software,named Comsol.

In my experiment in Japan, I often evaluate some transfer functions and 
thermal noise in a prototype KAGRA-SAS system. However, I didn’t have a 
calculation method in order to evaluate loss angle in this system. So It’s a 
very useful method for me to estimate thermal noise.

I wanted to know and get further experience to use Comsol, so I chose 
a simulation course in short lab work. In this work, I constructed a sapphire 
mirror model using Comsol and evaluated the elastic energy in my model. In 
this short lab work, Daniel helped me for many things. For example, he 
taught me how to get a good result using a sectioned mesh. I would like to 
thank Daniel.

Application to Silicon/Sapphire

Amang 5 way to evaluate bulk/coating thermal noise, We evaluated 
LIGO and KAGRA mirror thermal noise in this section. I evaluated Bulk-
thermoelastic noise with Ronny. 

I used Mathematica to evaluate this thermal noise. However,  my 
computer program had some mistakes, so I did not get correct data at first.

When I could not find my mistakes, Ronny suggested me many good 
methods to find where the error is. And 
he taught me some ways to get data 
efficientry 

Thanks to his good advice, I god a 
correct data like the right figure, and 
learned how to make a computer 
program more efficient. I wish to thank 
Ronny very muth.
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(1) COMSOL tutorial 
   Daniel's tutorial was helpful for us to start using such a complicated program. In 
addition to the tutorial, Stuart gave us a short lecture for ANSYS, which is also helpful 
for us in Tokyo Tech where we have a licence only for ANSYS. 
   Here I leave some notes for what I found in the COMSOL calculation for the 
mechanical resonances of a suspension system. First, it was needed to put rectangular 
ear to connect a cylindrical mirror and a cylindrical fiber of different materials. 
Overlapping the volume can cause a trouble defining its 
properties. I did not check if but it might be ok if we define all 
the segments first and then change the unoverlapping parts 
later. Second, I could not find a way to add gravity for a 
pendulum. There are functions to add mass or load, but the 
one found are for a static deformation, not for the 
gravitational restoring force. There should be a way though. 
 
(2) Coating thermoelastic noise in 20K 
   I was in the group of thermo-refractive noise in the noise analysis challenge, but I 
found it interesting to reconsider coating TE noise of a cryogenic mirror. Let me leave 
some notes of the thinking. See the figure below. The left panel represents substrate TE 
noise and the right panel represents coating TE noise. The temperature fluctuations at 
A and B can be averaged only if their distance is 
smaller than the beam radius. The fluctuations 
at A and C can be also averaged for substrate 
TE noise in the distance smaller than the beam 
radius, but they will not so much averaged out 
for coating TE noise as the thermal properties 
are different in different coating layers. It can be explained better with Levin's method. 
Expansion due to a generalized force causes different temperature in different coating 
materials to generate dissipations. Let us change the temperature to 20K. For the 
substrate, as is reported by Cerdonio, the heat flow is so fast that the temperature 
difference is small while the deformation is large for the high thermal expansion. For 
the coatings, the difference in the heat flow has little to do with the translational 
fluctuation but with the transvertial fluctuation. I will check it out. 


