2013 International School on Numerical Relativity and Gravitational Waves (APCTP Pohang, Korea) Aug 11, 2013

Alignment Sensing and Control for the KAGRA Interferometer

Yuta Michimura

Ando Group Department of Physics, University of Tokyo

Self introduction

- Yuta Michimura (道村唯太 みちむらゆうた)
- Department of Physics, University of Tokyo
- Relativity-related experiment using some optics
 - designing KAGRA interferometer
 - light speed anisotropy search

Outline

- Introduction to interferometric GW detection
 - KAGRA interferometer
 - basic principle of GW detection
 - importance of length and alignment control
 - signal extraction of mirror motions
- Modeling alignment sensing and control scheme in KAGRA
 - difficulties
 - current status

References

- Educational papers:
 E. D. Black & R. N. Gutenkunst: <u>Am. J. Phys. 71, 365 (2003)</u>

 H. Kogelnik & T. Li: <u>Appl. Opt. 5, 1550 (1996)</u>
- KAGRA specific:
 - Y. Aso, Y. Michimura, K. Somiya+: arXiv:1306.6747 (PRD accepted)
 - K. Somiya, KAGRA Collaboration: <u>Classical Quantum Gravity 29, 124007 (2012)</u>

KAGRA

- cryogenic interferometric GW detector
- operation in full configuration ~2017

Michelson interferometer

MI as a GW detector

fringe gives GW signal, but it is not linear to GW amplitude

Controlling the interferometer

control mirror motion so that fringe doesn't change

Michelson interferometer

Resonance of FP cavity

- laser beam resonates when $2L=m\lambda$ (m is an integer)
- intra-cavity power builds up at resonance anti-resonance

Resonance of FP cavity

- laser beam resonates when $2L=m\lambda$ (m is an integer)
- intra-cavity power builds up at resonance

Alignment of FP cavity

- mis-alignment degrades coupling of incident beam and FP cavity
 - \rightarrow intra-cavity power degrades
 - → phase sensitivity degrades resonance

Operating point of FP cavity

- alignment control (ASC)

 → keeps coupling of FP
 and incident beam
 at maximum
 - (~ 1 urad \rightarrow < 10 nrad)
- length control and alignment control is essential for GW detection

Summary 1/3

Interferometric GW detector is basically Michelson
 interferometer

_aser

- Fabry-Perot cavity increases its sensitivity to GW
- Mirror motions must be finely controlled to operate the interferometer with the best sensitivity
- Then how do we control them?

Well, it's pretty complicated

• I'm not sure if you want to know how

Well, it's pretty complicated

- I'm not sure if you want to know how
- But I will try to explain how anyway
- You will learn about
 - homodyne phase detection and heterodyne phase detection
 - phase modulation of laser beam
 - Gaussian beam

GW detection is phase detection

- GW changes length
 → phase of laser beam (EM wave) changes
- but photo detector is not sensitive to the phase of the laser beam
- Photo detector is sensitive to amplitude

Reference beam is needed

 if there's a reference beam, you can convert phase change to amplitude change reference beam that's why we need $\downarrow Ee^{i\omega't}$ interferometry $Ee^{i\omega t}$.aser $\mathrm{d}x$ $Ee^{i(\omega t + \phi)}$ photo current $I \propto |Ee^{i(\omega t + \phi)} + Ee^{i\omega' t}|^2 \leftarrow$ $= 2E^2 [1 + \cos\left((\omega - \omega')t + \phi\right)]$ 23

Homodyne and heterodyne

Heterodyne for Fabry-Perot cavity

- put 2 beams with different frequencies
- main beam resonates, but reference beam doesn't $2L=m\lambda$ $2L\neq m\lambda'$

Phase modulation

- electric field of a laser beam (plane wave) $E = E_0 e^{i\omega t}$
- phase modulation creates sidebands $E = E_0 e^{i(\omega t + \beta \sin \Omega t)}$ $\simeq E_0 [J_0(\beta) e^{i\omega t} + J_1(\beta) e^{i(\omega + \Omega)t} - J_1(\beta) e^{i(\omega - \Omega)t}]$ main upper sideband lower sideband

sidebands work as reference beam

electro-optic

phase modulator

Length sensing of FP cavity

- interference between
 - sidebands (reference)
 - main beam (carries cavity length info.)
- called Pound-Drever-Hall method

28

Length control of FP cavity

- demodulate photo detector output
- feedback to actuators attached on mirrors

Coil-magnet actuator

current in coils → creates magnetic field
 → magnetic force acts on a mirror

Alignment control?

- So far, we have only considered about the length control
- Length control can be understood by plane wave approximation

 $E = E_0 e^{i\omega t}$

- But laser beams are not plane wave, actually
- They are Gaussian beam
- You need to know about Gaussian beam for understanding alignment control

Gaussian beam

Near field and far field

- Gaussian beam is like
 - plane wave light near the waist
 - point source light far from the waist

Wavefront sensing

- wavefront of resonating main beam and cavity reflected sidebands are different
- this difference can be detected by split photo detector

Beam tilt and translation

- sensitivity to beam tilt is high at near field
- sensitivity to beam translation is high at far field

 thus, we can sense both tilt and translation by placing split photo detector at different places
 → we can align mirrors

Summary 2/3

- Phase detection is key for GW detectors
- For phase detection, you always need reference beam
- Phase modulation of beam creates sidebands, which work as reference beam
- Interference of main beam and sidebands gives length signal and alignment signal
- For alignment sensing, wavefront sensing technique is used
- Then what's the situation in KAGRA?

Headache.....

- I will briefly explain
 - further technologies used in KAGRA interferometer (and aLIGO, AdVirgo)
 - what I do for KAGRA

KAGRA main interferometer

- contains
 - 2 FP cavities
 - 1 Michelson interferometer
 - 1 power recycling cavity
 - 1 signal recycling cavity
- in total
 - 11 mirrors
 - 4 FP cavities
 - 1 Michelson

Degrees of freedom to control

- in total
 - 5 lengths
 - 11x2 alignments
- interferometer and control scheme must be finely designed so that KAGRA meets target sensitivity

Alignment sensing and control

- mirror angular motion creates noise
- so we want to control them with high gain

Modeling ASC

Angular sensing matrix

angular mirror motions are sensed at different photo detectors WFS Sensing Matrix [W/mrad]

> (Gouy phases at POP A:-8.0, POP B:-76.4 REFL A:88.3, REFL B:-88.4, AS A:6.7, AS B:-83.7, TR A:-61.4 deg) CS CH BS PR2 PRM SR3 SR2 SRM DS DH PR3 POP ADC F-3'50 -0'06 0.09 -0'/9 -0'40 <u>-0'0'</u> חצי -0'19 POP_BDC E0.17 0.00 0.00 -0 0.01 -0.02 -0.30 $\cap \cap \cap$ 12 -2 09 -1 02 በ በበ POP A11 F 0.91 -0 44 0.00 -0.00 23 -0 18 -0 14 -0.07 -0.51 -0.06 03 POP A10 F0.02 -0.01 -0.00 0.36 -0.36 \cap 26 -0.02 -0 00 -0.01 -0.00 POP B1 -0.00 -0.69 0.00 POP B1Q -0.05 --0 00 0.000 00 POP A21 = 0.06-0.00 -0.03-0.02 0.00 -0 10 -0 01 -0.01 POP A2Q -55 -0 00 0.00 1 00 N 73 <u>-n nr</u> nr POP B2 0.01 0.00 -0.00 0.01 0.00-0.01 0.020.00 0.00 POP B2Q 3 36 19 -0.01 6.06 0.01 -0 00 ٦ſ -0.01 -0.00 -4.96 ADC -4 07 - 48 0.3° -0.01 BDC 0.02-68 -0 14 -9 94 05 'A1Q -0.00 0.03 0.01 0.000 00 0.01B1 -N $\cap 12$ -86 $\cap \cap \Delta$ ng B1Q -0.00 -0.03 -0 0.28 -0 20 -0.01 -0.00 0.00 -0.00 -0.00 OC. -0.56 143 0.838 -80 3 60 Δ -0 00 -0 00 ۸ſ 0.01 0.00 -0.00 -0.04 -0 01 -0 0' $\cap \cap \cap$ $\cap \cap \cap$ 0.56-0.82 -8 -3 $\cap \cap \cap$ B2Q -0.00 0.00 0.03 -0 00 -0.01 0.010.01 AS -ADC -1 08 5 04 -0.27 -0 19 -0.09 -1.08 -53 AS^{BDC} -0.00 0.00 -0 09 -0 03 -0.06 -0.01 -0 00 .ന നന <u>n n1</u> AS A11E-0.00 0.00-0.00 0.00 -0 02 -0 00 -0 00 -0 00 nn AS A1QE0 -0 6 <u> 4</u> AS B11F0 -0.00 00 <u>0 05</u> -0.00 ______ AS B1Q -0.00 -0.00 -0.00 -0.01 -0 76 -0.15 -0 -0 00 0.01በ በበ 0.38 0 40 -9.23 0 00 -U U, .0 00 -0 00 0.00በ በበ TRX BDC 0.20 -0.00 -0 02 -0 00 87 TRY_ADC 0.40-0.38 50 TRYBDCFO

ASC noise coupling to sensitivity

close, but meets requirement

Current status

- finalized KAGRA interferometer design
- confirmed they are reasonable from ASC and many other considerations
- mirrors being fabricated

E. Hirose: JGW-G101786

 ASC barely meets requirement, detailed simulation on-going

Summary 3/3

- There are many degrees of freedom to control KAGRA interferometer
- Modeling interferometer control scheme is essential for designing interferometer
- I developed a model for simulating alignment sensing and control scheme for KAGRA
- We finalized KAGRA interferometer design
- More detailed, practical designing on going

Thank you 감사합니다 ありがとう

tat