KAGRA F2F (Toyama University)

Aug 2, 2013

WFS Shot Noise Requirement

Yuta Michimura

Department of Physics, University of Tokyo

KAGRA MIF Group

Was IFO designed reasonably?

- from ASC point of view
- WFS shot noise requirements (without using detailed suspension design info)
 - \rightarrow check if IFO meets these requirements

WFS servo model

1. Ignore suspension details

2. Suppose RMS of BSMs

3. Suppose WFS OLTFs

4. Simulate IFO response

5. Simulate DARM coupling

Residual angular motion

Angle to DARM coupling

Assumptions

 10^{3}

 10^{3}

Required/simulated WFS shot noise

- simulation done using Optickle
- not all meet the requirement

TABLE VIII. WFS shot noise requirements and the simulated shot noises. All values are in the unit of rad/\sqrt{Hz} .

	BRSE		DRSE		
	Requirement	Simulated	Requirement	Simulated	
ETMX	8.8×10^{-15}	1.9×10^{-14}	9.7×10^{-15}	2.9×10^{-14}	
ETMY	8.8×10^{-15}	1.9×10^{-14}	9.7×10^{-15}	1.9×10^{-14}	IMS
ITMX	8.8×10^{-15}	2.8×10^{-14}	9.7×10^{-15}	3.7×10^{-14}	2x to 4x larger
ITMY	8.8×10^{-15}	2.8×10^{-14}	9.7×10^{-15}	2.8×10^{-14}	
BS	9.2×10^{-12}	7.4×10^{-13}	1.5×10^{-11}	3.1×10^{-12}	
$\mathbf{PR3}$	3.2×10^{-09}	2.7×10^{-13}	1.4×10^{-09}	1.1×10^{-12}	
PR2	3.2×10^{-09}	1.0×10^{-13}	1.4×10^{-09}	3.1×10^{-13}	SR2
\mathbf{PRM}	3.2×10^{-09}	8.9×10^{-14}	1.4×10^{-09}	6.1×10^{-13}	~10v larger
SR3	7.4×10^{-12}	7.7×10^{-12}	1.3×10^{-11}	1.3×10^{-11}	a lox larger
SR2	7.4×10^{-12}	6.6×10^{-11}	1.3×10^{-11}	1.2×10^{-10}	
SRM	7.4×10^{-12}	1.4×10^{-12}	1.3×10^{-11}	6.8×10^{-12}	12

DARM coupling of WFS shot noise

WFS shot noise of SR2 contributes too much
 → may be we should not control SR2 by WFS

DARM coupling of WFS shot noise

- turning off SR2 WFS servo helps
- not perfect, but OK BRSE IR 217.6 Mpc → 217.0 Mpc DRSE IR 237.6 Mpc → 237.4 Mpc

Further concerns

- no safety margin
 WFS shot noise may be higher than calculation
- no QPD motion included
 - motion of beam reducing telescope(BRT)
 probably matters
 - → requirement calculation on going
- suspension modeling with local damping → on going

Angular noise coupling (pitch)

Angular noise coupling (yaw)

3