Filter Cavity Experiment and Frequency Dependent Squeezing

MIT Tomoki Isogai

Outline

- What is squeezing?
- Squeezing so far
- Why do we need frequency dependent squeezing?
- Filter Cavity Experiment at MIT
- Frequency Dependent Squeezing Expectations

Classical Optics

- Amplitude
- Phase
 - $E = |E|e^{i\phi}$
- Power
 - $P = EE^*$
- Phaser Representation
 Length → amplitude
 Angle → phase

Quantum Optics

- Annihilation / Creation operator a,a^{\dagger}
- Photon Number $n = a^{\dagger}a$
- Define a Hermitian operator pair

$$\hat{X}^{+} = \hat{a}^{\dagger} + \hat{a}$$
$$\hat{X}^{-} = -i(\hat{a} - \hat{a}^{\dagger})$$
$$E = X^{+} \cos \omega t + X^{-} \sin \omega t$$

Quantum Optics

 $E = X^+ \cos \theta + X^- \sin \theta$

• Uncertainty Principle:

No measurement can be completely deterministic in two non-commuting observables

• E.g.

 $\triangle x \triangle p \geq \hbar/2$

• Similarly for EM field,

 $\triangle X^+ \triangle X^- \ge 1$

Phaser Representation

Analogous to the phaser diagram Stick \rightarrow DC term Ball \rightarrow fluctuations

Phase Squeezed State

Sideband Picture

Sheila Dwyer Thesis

How to squeeze?

- A tight hug
- Non-linear crystal
- Ponderomotive

A squeezer table

Anti Symmetric Port

H1 Strain Sensitivity

H1 Squeezer Summary

- 2.25dB quantum noise reduction
- Some squeezing down to nearly 100Hz
- Inspiral range was improved by 1 Mpc
- Squeezing did not add noise at any frequency
- Noise model and characterization

Catch

Frequency Dependent Squeezing

- Theoretically frequency dependent squeezing is well understood (ref. H.J. Kimble et al., Phys. Rev. D 65, 022002, 2001)
- Using a simple two mirror Fabry-Parot cavity (called filter cavity), we can rotate our squeezing angle depending on frequency
- We can reflect frequency INDEPENDENT squeezed light off a cavity, and get frequency DEPENDENT squeezing

 Proof of principle experiment is done at high frequency (ref. S. Chelkowski et al., Phys. Rev. A 71, 013806, 2005)

MIT Filter Cavity Experiment

Objective 1: Measuring optical Losses to determine Advanced LIGO filter cavity design

- Mirrors have absorption and scattering loss
- Loss degrades the squeezing by mixing with the vacuum state
- Cavity loss determines how long filter cavity we need for GW detector (16m? 100m? 4km?)

Barsotti, Evans, Isogai, (Kwee), Miller

MIT Filter Cavity Experiment

- Objective 2: Implementing practical filter cavity control scheme
- Squeezed vacuum doesn't have coherent amplitude, so how do we control the filter cavity?
- We could use green light
- We'll check the stability to see if this really works

Barsotti, Evans, Isogai, (Kwee), Miller

MIT Filter Cavity Experiment

Objective 3: Characterize technical noise and prepare for demonstration of audio-band frequency dependent squeezing

Barsotti, Evans, Isogai, (Kwee), Miller

Problem 1: Loss Measurement

- We assume that if the beam size is the same, scattering and absorption loss should be similar
- We prepared a concentric cavity very near its instability point, so that the beam size diverges very quickly as we change the cavity length, and we measure loss as a function of the beam size
- We extrapolate the results to longer cavity
- Use this info to infer what length we need for a realistic GW detector filter cavity

Experimental Setup

- * Lock laser to cavity using green light
- * Sweep AOM drive frequency to map out infrared resonance linewidth measurement
- * Cut AOM drive to extinguish infrared input beam ringdown measurement

Loss Measurement

- With high precision (~ a few ppm)
- How do we gain confidence in our measurements and know if there are no systematic error?
- Various methods to measure total loss (ringdown both in refl and trans, line width, ringup both refl); they should all agree
- Independent measurements from Caltech, UC Fullerton

Linewidth Measurement

Ringdown Measurement

Result Summary

- Cavity Characteristics:
 Finesse: 29990 +/- 102
 Beam Radius at Mirror: 1.471 +/- 5.3e-6 mm
 Confocal Length: 6.39 +/- 4.6e-5 m
- Total Loss:
 Linewidth: 209.2 +/- 4.2 ppm
 Ringdown Refl: 210.0 +/- 0.4 ppm
 Ringdown Trans: 208.5 +/- 0.8 ppm
- Scattering & Absorption: Measured: 10.1 +/- 0.4 ppm (1.6 +/- 0.1 ppm/m)

Status and Plans

- Linewidth, refl ringdown and trans ringdown give consistent results
- Beginning to investigate loss as a function of spot position and spot size
- Preparing for integration of cavity and squeezed light source

Timeline

- Finish up the loss measurement by September 2013
- Start to combine the filter cavity with the squeezer and measure the frequency dependent squeezing by the end of March 2014

Motivation

		Make Entry <<	Today >> Latest List Past 1 3 6 Months Ca	elendar Search
14:28:11 Wed Jun 5	Topic: general Author: Lisa E	arsotti	This entry replaces a <u>previous version</u> .	Wed Jun 5 18:28:11 2013 UTC
2013 (Local)	Official bet about frequency dependent squeezing			
Subentry	Tomoki and John bet that frequency dependent squeezing will be unambiguously measured with their filter cavity by the end of March 2014, and that their measurements will result in a clear "money plot".			
	I bet that there is no way they will be able to do that before the end of May 2014.			
	In case of ambiguity, the reference time will be the time (UTC) at which the measurements are completed, to be compared with midnight of March 31, and midnight of May 31 (UTC).			
	The winner will pick a restaurant for dinner, the looser will pay. - Lisa			
	- <u>Lisa Barsotti</u>		http://www.ligo.mit.edu/ile (<u>ref.url</u>)	
	FILTERCAVITY			Add or Remove Keyword: NO_KEYWORD

Filter Cavity Team

Patrick Kwee

John Miler

Lisa Barsotti

Mattew Evans

Nergis Mavalvala

H1 Squeezer People

- Lisa Barsotti
- Sheon Chua
- Sheila Dwyer
- Max Factourovich
- Keita Kawabe
- Aleksandr Khalaidovski
- Ping Koy Lam
- Nergis Mavalvala

- David McClelland
- Conor Mow-Lowry
- Roman Schnabel
- Daniel Sigg
- Michael Stefszky
- Henning Vahlbruch
- Stan Whitcomb

Conclusions

- Future generation GW detectors will be limited by quantum noise limit, in almost all the frequency band
- Frequency dependent squeezing using a filter cavity seems to be a promising way to go beyond the quantum noise limit
- At MIT, the filter cavity experiment should inform us a realistic filter cavity design for advanced GW detectors

Filter Cavity Schematic

