

Noise Identification in Gravitational wave search using Artificial Neural Networks

Young-Min Kim (Pusan Nat'l Univ. & NIMS)

R. Biswas¹, L. Blackburn², J. Cao³, R. Essick⁴, K. A. Hodge⁵, E. Katsavounidis⁴, K. Kim^{6,7}, Y.-M. Kim^{8,7}, E.-O. Le Bigot³, C.-H. Lee⁸, J. J. Oh⁷, S. H. Oh⁷, E. J. Son⁷, R. Vaulin⁴, X. Wang⁹, and T. Ye⁹. ¹UTB, ²NASA/GSFC, ³TNLIST, Tsinghua Univ., ⁴LIGO-MIT, ⁵LIGO-Caltech, ⁶Hanyang Univ., ⁷NIMS, ⁸Pusan Nat'l Univ. ⁹Tsinghua Univ.

K. Hayama, T. Yamamoto (Osaka City Univ.)

LIGO

Laser Interferometer for GW Observation

Laser Interferometer for GW Observation

Goal

LIGO

- Automate process of Glitch (non-gaussian noise transient) Identification in data preparation stage
 - Cleaning the data, monitoring, and feedback for commissioning or tuning

Multi-Variate Classifiers

AuxMVC - first draft

arxiv:1303.6984

Artificial Neural Networks Ensemble

Application Results

Q: Why AuxChannel Data So Different with GRB Data in the viewpoint of Multivariate Classifiers?

LIGO

Q: Why AuxChannel Data So Different with GRB Data in the viewpoint of Multivariate Classifiers?

LIGO

Q: Why AuxChannel Data So Different with GRB Data in the viewpoint of Multivariate Classifiers?

LIGO

Feature Selection : t - statistic

I. one-sample t-test

$$t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$$

- $\bar{x} = \text{sample mean}$
- s = sample standard deviation
- n = sample size
- μ_0 = specific value

LIGO

LIGO

LIGO

Goal

LIGO

- Automate process of Glitch (non-gaussian noise transient) Identification in data preparation stage
 - Cleaning the data, monitoring, and feedback for commissioning or tuning
- Inclusion of different information which current input data (KW triggers) may not contain.
 - consideration of different trigger generation algorithm

Trigger Generation methods

- I. KleineWelle algorithm (Current trigger generation)
- 2. Omega pipeline (Q-transformation)
- 3. Excess Power
- 4. Omicron pipeline
- 5. GSTLAL pipeline
- 6. Or Something NEW ???

LIGO

The Hilbert-Huang Transformation

- Hilbert Transformation + Empirical Mode Decomposition
 - Decomposition of complicated data into a collection of Intrinsic Mode Function (IMF)
- It works well for non-stationary and non-linear data.
- Preliminary study of HHT on GW data analysis.
 - J. B. Camp et al, "Application of the Hilbert-Huang transformation to the search for gravitational waves" PRD 75, 061101 (2007)
 - A. Stroeer et al, "Methods for detection and characterization of signals in noisy data with the Hilbert-Huang transformation", PRD 79, 124022 (2009)

Hilbert transform [wikipedia.org]

 In mathematics and in signal processing, the Hilbert transform is a linear operator which takes a function, u(t), and produces a function, H[u](t), with the same domain.

$$\mathcal{H}[u](t) = \frac{1}{\pi} \mathcal{P} \int_{-\infty}^{\infty} \frac{u(\tau)}{t - \tau} d\tau$$

• Complexify:

$$z(t) = u(t) + i \mathcal{H}[u](t) = a(t)e^{i\theta(t)}$$

• Relationship with the Fourier transform: $\mathcal{F}[\mathcal{H}[u]](\omega) = -i \operatorname{sgn}(\omega)\mathcal{F}[u](\omega)$

A problem of traditional Hilbert transform

Empirical Mode Decomposition (EMD)

"Sifting"

$$u(t) - m_1 = h_1,$$

 $h_1 - m_2 = h_2,$

$$h_{k-1} - m_k = h_k \equiv c_1$$

$$\Rightarrow u(t) - c_1 \equiv r_1 = \sum_i m_i$$

$$SD = \frac{\sum_{t} |h_{k-1}(t) - h_{k}(t)|^{2}}{\sum_{t} h_{k-1}^{2}(t)}$$

Intrinsic Mode Function (IMF)

 $u(t) - c_1 = r_1,$ $r_1 - c_2 = r_2,$ \vdots $r_{n-1} - c_n = r_n$ $\Rightarrow u(t) - \sum c_j = r_n$

 $[c_j(t) + i \mathcal{H}[c_j](t) = a_j(t)e^{i\theta_j(t)}]$

	Fourier	Wavelet	Hilbert
Basis	a priori	a priori	Adaptive
Frequency	Integral transform: Global	Integral transform: Regional	Differentiation: Local
Presentation	Energy-frequency	Energy-time- frequency	Energy-time- frequency
Nonlinear	no	no	yes
Non-stationary	no	yes	yes
Uncertainty	yes	yes	no
Harmonics	yes	yes	no

Application to Aux. Ch.

Application to CBC signals

Goal

- Automate process of Glitch (non-gaussian noise transient) Identification in data preparation stage
 - Cleaning the data, monitoring, and feedback for commissioning or tuning
- Inclusion of different information which KW algorithm may not extract from raw data.
 - consideration of different trigger generation algorithm
- Real time (or low latency) analysis on Glitch Identification

Low latency Glitch Identification

- On-going project : iDQ pipeline
 - real-time (low latency) glitch identification and data quality (DQ) analysis using Machine Learning Algorithm

LIGO

Collaboration with KAGRA

- Hayama's visit to NIMS (Feb. 2013)
 - Discussion on Research subjects for publication
 - Application of current methods to CLIO data. (if not, LIGO data as plan B.)
 - Multi-class MVC development
 - Develop a measure that measures channel's responsibility for glitches
 - Application of SOM to LIGO data
- Application of HHT to CLIO data

HHT on CLIO h(t) data

• HHT on CLIO h(t) --> 12 IMF

Summary

- Application of Machine Learning Algorithm (MLA) to Auxiliary channels data for glitch identification
 - auxmvc paper was submitted (arxiv:1303.6984)
- Artificial Neural Networks Ensemble was developed and applied to auxiliary channel data
 - At FAP 0.1%, efficiency is more than 50% for LIGO Livingston data.
 - Feature selection using t-statistic was studied. More investigation is needed.
- Trigger generation methods became more important.
 - We are studying HHT, KW algorithm, and other trigger methods.
- HHT application to CLIO data

Future works

- Genetic algorithm aided ANN (GANN) module optimization.
 - Network Topology Optimization
 - Investigation on a quantitative indicator or auxiliary channels to ANN rank
 - Implementation of GANN on computing accelerators (GPU, FPGA, etc.)
- Development of low latency analysis pipeline : iDQ pipeline, etc.
 - Implementation of GANN into iDQ
 - Access to online segments
 - Runs for Engineering Runs
- Application of MLA/GANN to different Trigger Generation Algorithm
 - Trigger generation scheme development for HHT
 - Application to Omega and/or GSTLAL triggers
- Application of HHT and MLA/GANN to CLIO data

LIGO

Extra Slides

Data Preparation

LIGO

ANN - BackPropagation Algorithm

• How to get the good results in ANN ?

ANN - BackPropagation Algorithm

• In each epoch, the connection weights are calculated to reduce error between desired output and calculated output.

ANN - RPROP Algorithm

• Resilient backPROPagation algorithm (Igel & Hüsken, 2000)

