バイオリンモードの 重力波観測への影響

端山和大

KAGRA detector characterization team

バイオリンモード

- バイオリンモードの16分裂のフィッティング
- インスパイラルサーチへの影響
- バーストサーチへの影響
- 非定常性雑音による励起の影響
- ダンピングによる改善
- 位相の変化について

Violin mode in initial LIGO

Violin modes in initial LIGO data

V. Boschi D. thesis

Violin mode in initial LIGO data

V. Boschi D. thesis

Spectrum with 16-separated violin modes

16-separated Violin modes

-0000- ∞

Effect to inspiral search

Spectrum with violins

Parameter estimation ∞ $-\infty$ $-\infty$ ∞

 インスパイラルのパラメータ推定精度についてどの 程度の影響があるか?

Fisher matrixを用いた推定

-0000--0000-

Effect to Burst search

バイオリンモード分裂なし

バイオリンモード4分裂

バイオリンモード16分裂 ∞

バイオリンモード16分裂

Comparison of SNRs at 10kpc

	lviolin	4 divided	16 divided
KK+9 model Ae	7.7400	8.1500	8.2800
KK+9 model Ap	9.1700	9.0800	8.9500
KTK13 R0e	6.9500	3.5700	3.9800
KTKI3 R0p	6.9400	6.5100	5.2100
KTK13 R2e	56.2100	53.4100	50.2300
KTKI3 R2p	69.7300	56.8700	49.6800
KTK13 R3e	11.7000	20.2400	18.0400
KTKI3 R3p	26.1500	23.1700	17.2900
TKII BI2XIBI0	376.0200	359.3200	344.5100
TKII BI2X20B0I	73.5300	65.3800	62.3600
TKII BI2X20BI0	173.0600	109.4000	143.8000
TK11 B12X5B01	238.0800	228.7400	226.8900
TKII BI2X5BI0	328.0400	309.4600	286.9100
TKII BI2XIB0I	305.4000	217.1400	274.3400
mean ratio [/Iviolin]	1	0.9	0.8

ダンピングによる改善

バイオリンモードをダンピングする方法について、実 験・データ解析面からいくつか提案されている。

- シャドウセンサ(R. Micheletto(横浜市大)、阿久津(天文台))
 http://gwdoc.icrr.u-tokyo.ac.jp/cgi-bin/DocDB/ShowDocument?docid=1521
- MBLT(端山(大阪市大))

どのくらいダンピングすればよいのかを調べた。

注)本レポートではシャドウセンサで振動をトレースして、データ解析 でダンプする方法を想定したが、ハードウェア的にダンプする方法も考 察する必要があり、その場合、Qが下がるためにバイオリンの裾が広が るので、結果はもっと悪くなる。

ダンピングによるinspiral探査の改善

1/4にDamp できれば、Inspiral rangeは1本の
 時と変わらない。

○ 1/4にDampできれば、SNRのロスはほとんどない。

	lviolin	4 divided	16 divided	I/4Dumping
KK+9 model Ae	7.7400	8.1500	8.2800	7.9900
KK+9 model Ap	9.1700	9.0800	8.9500	9.1500
KTK13 R0e	6.9500	3.5700	3.9800	6.7300
KTKI3 R0p	6.9400	6.5100	5.2100	6.3100
KTK13 R2e	56.2100	53.4100	50.2300	55.6800
KTKI3 R2p	69.7300	56.8700	49.6800	67.9400
KTK13 R3e	11.7000	20.2400	18.0400	19.2900
KTKI3 R3p	26.1500	23.1700	17.2900	26.0200
TKII BI2XIBI0	376.0200	359.3200	344.5100	373.5600
TKII BI2X20B0I	73.5300	65.3800	62.3600	68.7700
TKII BI2X20BI0	173.0600	109.4000	143.8000	157.0700
TKII BI2X5B0I	238.0800	228.7400	226.8900	237.0200
TKII BI2X5BI0	328.0400	309.4600	286.9100	326.2600
TKII BI2XIBOI	305.4000	217.1400	274.3400	299.7800
mean ratio [/Iliolin]	1	0.9	0.8	0.98

非定常雑音によるviolin modeの励起

- 。 突発的に入ってくるseismic motionなどによるグリッチ
 がviolin modeを励起するエネルギーになりうる。
- LIGO S5, S6の経験を参考にすると、日にSNRが50以上のものが多数出現する。
- KAGRAの場合Q~10⁸のため、励起が長時間(~3日)続く
 ことを想定して、励起した状態でのサーチを評価する。

SNR~50のイベントが1日のうちに多数出現

13年6月13日木曜日

バースト探査でSNR~200-20000!

K.Yamamoto M. thesis

Violin mode excited by a spike

バイオリンモード励起

Comparison of SNRs at 10kpc

	l violin	4 divided	16 divided	Excited
KK+9 model Ae	7.7400	8.1500	8.2800	7.2300
KK+9 model Ap	9.1700	9.0800	8.9500	7.6200
KTK13 R0e	6.9500	3.5700	3.9800	1.2100
KTKI3 R0p	6.9400	6.5100	5.2100	1.6900
KTK13 R2e	56.2100	53.4100	50.2300	41.7000
KTKI3 R2p	69.7300	56.8700	49.6800	23.7000
KTK13 R3e	11.7000	20.2400	18.0400	9.1400
KTKI3 R3p	26.1500	23.1700	17.2900	16.8700
TKII BI2XIBI0	376.0200	359.3200	344.5100	303.0600
TK11 B12X20B01	73.5300	65.3800	62.3600	58.7000
TK11 B12X20B10	173.0600	109.4000	143.8000	86.8800
TKII BI2X5B0I	238.0800	228.7400	226.8900	192.0500
TKII BI2X5BI0	328.0400	309.4600	286.9100	231.7100
TKII BI2XIB0I	305.4000	217.1400	274.3400	134.1200
mean ratio [/Iliolin]	1	0.9	0.8	0.6

バイオリンモード付近での位相の変化

 ピーク付近で位相が大きく変化する。位相の発展を追う 探査(inspiral)ではこの効果は重要になる。

FIG. 7. Transfer function for two stage pendulum.

	分裂なし	4分裂	I6分裂	I6分裂+I0x励起	I6分裂+I/4xDump
inspiral (Mpc)	241	232	224	191	239
Burst		0.9	0.8	0.6	0.98

o リコイルマスのQ値を測定してほしい。

(Qが1E4と3E5では結果がレンジが33Mpc違う。)

 シャドウセンサ+データ解析的ダンピングが上手く働けば、バイ オリンモードを1/4ダンピングすれば分裂の影響なし

ただし、ハードウェア的にダンピングする場合はQが悪化するために、1/4では十分では無い。

 非定常雑音の低減化をがんばる。
 (非定常雑音、特に広帯域・高SNRスパイクによって10倍に励起 されると、インスパイラルレンジが200Mpcを切り、超新星爆発 についてもSNRが4割落ちる。)

- **いくつかのダンピング方法についてのスタディ**
- インスパイラル探査で、パラメータ推定精度についてへの影響
- バイオリンによる位相の変化

エクストラスライド

aLIGO Monolithic Stage

Steel wires Penultimate mass Ear Steel wire break-off prism Silica fibres End/input test mass Ear

LIGO-G1200579

詳細な解析は有限要素法で

Finite Element Analysis

- Use FEA to predict energy stored in the suspension elements and the dilution
- Model:
- bulk loss
- surface loss
- thermoelastic loss
- weld loss
- Bond loss
- Energy storage in fibre essential to model thermal noise performance

$$x^{2}(\omega) = \frac{4k_{B}T}{m\omega} \left(\frac{\omega_{o}^{2}\phi_{total}(\omega)}{\omega_{o}^{4}\phi_{total}^{2}(\omega) + (\omega_{o}^{2} - \omega^{2})^{2}} \right)$$

A.V. Cumming et al., Class. Quant. Grav., 215012, 2009 A.V. Cumming et al., Class. Quantum Grav. 035003, 2012

