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Goal

* Automate process of Glitch (non-gaussian noise transient)
|dentification in data preparation stage

Cleaning the data, monitoring, and feedback for commissioning or
tuning
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Multi-Variate Classifiers

Random Forest of
Bagged Decision Trees

SupportVector
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AuxMVC - first draft
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Combining ANN Rank

- max{rank_i}
- something new ?

- average{rank_i}
- max{eff_i/fap_i}
- likelihood ratio

-

Use lots of
trained neural

networks for

evaluation :
Benchmarking
Random Forest

low complexity
trained ??

due to restricted network

from full connection
random generation

IRPROP (Igel & Hiisken, 2000)
by hand,

& Evaluation : Direct application

(Montana & Davis, 2001),
= tuning training parameters

to trained network
= topological degeneracy
= partial connections but

@ Training Algorithm : GA
= over
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LIGO
Application Results

All Auxiliary channels @ LLO
Auxiliary channels @ LLO
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QI Why AuxChannel Data So Different with GRB Data
in the viewpoint of Multivariate Classifiers?
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QI Why AuxChannel Data So Different with GRB Data
in the viewpoint of Multivariate Classifiers?
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QI Why AuxChannel Data So Different with GRB Data
in the viewpoint of Multivariate Classifiers?
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Feature Selection : t - statistic

|. one-sample t-test T sample mean

S sample standard deviation
T — Ho

NG

n sample size

Lo specific value

2. two-sample t-test

sample mean of class i

sample standard deviation of class i

sample size of class i

test on each auxiliary channel J
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ROC performances of t-test features
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ROC performances of t-test features
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ROC performances of t-test features
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ROC performances of t-test features
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Goal

* Automate process of Glitch (non-gaussian noise transient)
|dentification in data preparation stage

- Cleaning the data, monitoring, and feedback for commissioning or
tuning

* Inclusion of different information which current input data (KW
triggers) may not contain.

- consideration of different trigger generation algorithm

4th K-J workshop on KAGRA @ Osaka Univ.
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Trigger Generation methods

|. KleineWelle algorithm (Current trigger generation)

Omega pipeline (Q-transformation)

Excess Power

Omicron pipeline

GSTLAL pipeline

Or Something NEW 22!
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The Hilbert-Huang Transformation

 Hilbert Transformation + Empirical Mode Decomposition

- Decomposition of complicated data into a collection of Intrinsic
Mode Function (IMF)

* It works well for non-stationary and non-linear data.

* Preliminary study of HHT on GW data analysis.

- J.B.Camp et al,"Application of the Hilbert-Huang transformation
to the search for gravitational waves” PRD 75,061 101 (2007)

- A.Stroeer et al,““Methods for detection and characterization of

signals in noisy data with the Hilbert-Huang transformation”,
PRD 79, 124022 (2009)

4th K-J workshop on KAGRA @ Osaka Univ.



Hilbert transform

[wikipedia.org]

® |n mathematics and in signal processing, the Hilbert
transform is a linear operator which takes a

function, u(t), and produces a function, H[u](t),
with the same domain.

Hu](t) = %73 /_ N t“(_TidT
® Complexify:
2(t) = u(t) + ¢ Hlul(t) = a(t)ew(t)

® Relationship with the Fourier transform:

F [ Hul| (w) = —i sgn(w) Flul(w)



A problem of traditional
ilbert transform

Hilbert Transform : Phase Angles for Test Data
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[Courtesy: Norden E. Huang]




Empirical Mode
Decomposmon (EMD)

“Sifting”
U(t) — My = hl,

hi —mo :h2,

[Courtesy: Norden E. Huang]



Intrinsic Mode Function

u(t) — c1 = 1,

ry —Co = T9,

I'm—1 — Cp = T'n

:>u(t)—ch =r,

J

c;(t) +1i Hc;](t) = a;(t)ed D

[Courtesy: Norden E. Huang]



Fourier Wavelet Hilbert
Basis a priori a priori Adaptive
Frequenc Integral transform: | Integral transform: Differentiation:
T Y Global Regional Local
Presentation Energy-frequency Energy-time- Energy-time-
frequency frequency
Nonlinear no no yes
Non-stationary no yes yes
Uncertainty yes yes no
Harmonics yes yes no

[Courtesy: Norden E. Huang]




Application to Aux. Ch.
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Goal

* Automate process of Glitch (non-gaussian noise transient)
|dentification in data preparation stage

- Cleaning the data, monitoring, and feedback for commissioning or
tuning

* Inclusion of different information which KW algorithm may not
extract from raw data.

- consideration of different trigger generation algorithm

* Real time (or low latency) analysis on Glitch Identification

4th K-J workshop on KAGRA @ Osaka Univ.
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Low latency Glitch Identification

LIGO

On-going project : iDQ pipeline

real-time (low latency) glitch identification and data quality (DQ)
analysis using Machine Learning Algorithm
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Collaboration with KAGRA

* Hayama’s visit to NIMS (Feb. 201 3)

Discussion on Research subjects for publication

Application of current methods to CLIO data. (if not, LIGO data
as plan B.)

Multi-class MVC development

Develop a measure that measures channel’s responsibility for
glitches

- Application of SOM to LIGO data
Application of HHT to CLIO data
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HHT on CLIO h(t) data

e HHT on CLIO h(t) --> 12 IMF

— HHT IMF 6
® ® KW 1024 - 4096
|® ® KW 32-2048
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Summary

 Application of Machine Learning Algorithm (MLA) to Auxiliary
channels data for glitch identification

- auxmvc paper was submitted (arxiv:1303.6984)

Artificial Neural Networks Ensemble was developed and applied to
auxiliary channel data

- At FAP 0.1%, efficiency is more than 50% for LIGO Livingston data.

- Feature selection using t-statistic was studied. More investigation is
needed.

Trigger generation methods became more important.

- We are studying HHT, KWV algorithm, and other trigger methods.
HHT application to CLIO data
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Future works

 Genetic algorithm aided ANN (GANN) module optimization.

- Network Topology Optimization
-  Investigation on a quantitative indicator or auxiliary channels to ANN rank

-  Implementation of GANN on computing accelerators (GPU, FPGA, etc.)

e Development of low latency analysis pipeline : iDQ pipeline, etc.
- Implementation of GANN into iDQ
- Access to online segments
- Runs for Engineering Runs

* Application of MLA/GANN to different Trigger Generation Algorithm

- Trigger generation scheme development for HHT

-  Application to Omega and/or GSTLAL triggers
Application of HHT and MLA/GANN to CLIO data
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