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How to detect a gravitational wave? 

Imagine a ring of 
free falling test 
masses: 
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How to detect a gravitational wave? 

A gravitational 
wave will change 
the circle to an 
ellipse: 
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How to detect a gravitational wave? 

Using an 
interferometer the 
length changes of the 
arms is measured: 
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Noise in interferometric GWDs 

A lot of noise source can be found in a 
GWD like Quantum noise, Gravity 
gradient noise and Brownian noise of 
the optics, the test masses and their 
suspensions. 
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Relation of noise and loss 

A simple example – Johnson-Nyquist-Noise 

According to Johnson, Thermal Agitation of Electricity in Conductors  (1928) 

and Nyquist, Thermal Agitation of electric Charge in Conductors (1928), we 

have the so called Johnson-Nyquist-Noise in a resistor. 

The movement of a thermally driven charge 𝑄𝑒 (time derivation 𝑄𝑒  yields 

the current) is related to a thermal voltage 𝑈𝑡ℎ like: 

𝑈𝑡ℎ = 𝑅 × 𝑄𝑒  

In an experiment one measures: 

𝑈𝑡ℎ = 4𝑘𝐵𝑇𝑅Δ𝜔 

and the power spectral density (PSD) 𝑆𝑈 of the voltage 𝑈𝑅 is given by: 

𝑆𝑈 𝜔 = 𝑈𝑡ℎ
2 /𝜔2 = 4𝑘𝐵𝑇𝑅 

𝑘𝐵…Boltzmann’s constant, 𝑅…resistance, Δ𝜔…bandwidth, 𝜔…angular frequency 
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Relation of noise and loss 

Fluctuation-Dissipation-Theorem (FDT) 

Callen and Welton deduced a theory based on thermodynamics and 
statistics to calculate  fluctuations of a generalized force 𝑉 in any dissipative 
linear system. 

The PSD (i.e. fluctuations in a certain bandwidth) of  this force is given by: 
 

𝑆𝑉(𝜔) = 4𝑘𝐵𝑇ℜ 𝑍  
 

The impedance 𝑍  is defined to link the generalized force V with a 
generalized displacement 𝑄: 

𝑍(𝜔) = 𝑉 𝑄   
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In an oscillator we expect thermally driven fluctuations 

of the position 𝑥 (𝑄) of the attended mass due to 

some force 𝐹𝑡ℎ (V) extending the spring. 

Thus the mechanical impedance is: 
 

𝑍(𝜔) = 𝐹𝑡ℎ 𝑥   
 

And the PSD of the force is again obtained using: 
 

𝑆𝐹(𝜔) = 𝐹𝑡ℎ
2 𝜔 = 4𝑘𝐵𝑇ℜ 𝑍  

 

Ok, but what about the fluctuations in position i.e. the power spectral 
density of the displacement in 𝑥? 

Relation of noise and loss 

Applying the FDT to a mechanical system 

𝑥 

𝐹𝑡ℎ 
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Relation of noise and loss 

Displacement noise of a oscillator I 

Assuming a harmonic oscillator with a linear-elastic spring 𝑘 and viscous 
damping 𝑓 the equation of motion follows: 
 

𝑚𝑥 + 𝑓𝑥 + 𝑘𝑥 = 𝐹𝑡ℎ  
 

Using 𝑥 = 𝑥 𝜔 𝑒𝑖𝜔𝑡 and 𝐹𝑡ℎ = 𝐹𝑡ℎ 𝜔 𝑒𝑖𝜔𝑡: 
 

−𝜔2𝑚 + 𝑖𝜔𝑓 + 𝑘  𝑥 = 𝐹𝑡ℎ 
 

The impedance is then: 
 

𝑍 =
𝐹𝑡ℎ
𝑥 

=
−𝜔2𝑚 + 𝑖𝜔𝑓 + 𝑘  𝑥

𝑖𝜔 𝑥
= i𝜔𝑚 + 𝑓 +

𝑘

𝑖𝜔
 

 

The real part of it is simply ℜ 𝑍 = 𝑓. 

𝑥 

𝐹𝑡ℎ 
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Relation of noise and loss 

Displacement noise of a oscillator II 

Now we recalculate the PSD after Callen/Welton using our former 
results −𝜔2𝑚 + 𝑖𝜔𝑓 + 𝑘  𝑥 = 𝐹𝑡ℎ  and ℜ 𝑍 = 𝑓: 
 

𝑆𝐹(𝜔) =
𝐹𝑡ℎ
2

𝜔
= 4𝑘𝐵𝑇ℜ 𝑍  

 

Rearrange:  
𝑥2

𝜔
= 4𝑘𝐵𝑇

𝑓

−𝜔2𝑚+𝑖𝜔𝑓+𝑘 2 
 

Taking the real part to get a physical result we finally obtain the 
displacement power spectral density of a harmonic oscillator with its 

resonance at 𝜔0 = 𝑘/𝑚 : 

𝑆𝑥 𝜔 = 4𝑘𝐵𝑇
𝑓

−𝜔2 + 𝜔0
2 2𝑚2 + 𝜔2𝑓2
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Elastic behaviour of solids 

Ideal solid vs. real solid I 

Compare the elastic behaviour of the linear-elastic spring to that of a 
real solid under some static stress applied and released. We observe 
creep and recovery of the strain: 
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Elastic behaviour of solids 

Ideal solid vs. real solid II 

Now consider some static strain applied. After some initial stress the 
real solid relaxes during time while the linear-elastic keeps constant: 
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Elastic behaviour of solids 

Ideal solid vs. real solid III 

In case of a dynamic stress the strain of the real solid will follow with 
some time lag Δ𝑡. 
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Elastic behaviour of solids 

Dynamic stress-strain relation 

The time lag is related to the phase lag like Δ𝑡 = 𝜙/2𝜋𝑓. Thus the 
equations for stress and strain are given by: 
 

 𝜎 = 𝜎0𝑒
𝑖𝜔𝑡  

 

 𝜀 = 𝜀0𝑒
𝑖 𝜔𝑡−𝜙  

 

The complex Young’s modulus 𝑌 

(likewise spring constant 𝑘) is 

obtained by dividing stress and strain: 
 

𝑌 =
𝜎

𝜀
= 𝑌0𝑒

𝑖𝜙 ≈ 𝑘 1 + 𝑖𝜙               𝜙 ≪ 1 
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Relation of noise and loss 

Displacement noise of a structural damped oscillator 

Again, we assume a harmonic oscillator. Instead of viscous damping we use 
a complex spring constant i.e. structural damping (also internal damping): 
 

𝑚𝑥 + 𝑘(1 + 𝑖𝜙)𝑥 = 𝐹𝑡ℎ 
 

Following the former calculation, this results in a displacement power 
spectral density for a structural damped harmonic oscillator : 
 

𝑆𝑥,𝑠𝑡𝑟𝑢𝑐 𝜔 =
4𝑘𝐵𝑇

𝑚𝜔

𝜙 𝜔0
2

−𝜔2 + 𝜔0
2 2 + 𝜔4𝜙2

 

 

Hereby 𝜙 is called the loss angle of the system, respectively 𝜙−1 denotes 
the Q-factor which gives a measure of the dissipation of energy (𝜙 ≪ 1). 
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Relation of noise and loss 
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Relation of noise and loss 

1 10 100 1000 10000 100000
10

-25

10
-20

10
-15

10
-10

10
-5

d
is

p
la

c
e
m

e
n
t 

P
S
D

 S
x
 i
n
 m

/s
q
rt

(H
z
)

frequency in Hz

 viscous

 =10
-2
,T=300K

 =10
-10

,T=300K

Energy is transferred into the 
resonance of the system. 
Thus low losses (high Qs) are 
needed. 
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Relation of noise and loss 
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Lowering the temperature 
decreases the level of noise. 



Group Seminar at ICRR 26th April 2013 Gerd Hofmann 20 / 53 

Friedrich-Schiller-Universität Jena   

So far … 

What we have: 

• Two ways to introduce loss in a 1D harmonic oscillator 
– Viscous damping (e.g. particle moving in a fluid or gas) 

– Structural damping (e.g. vibration of a solid) 

• Noise is related to 
– Temperature (lower is better) 

– Loss in a system (lower is better) 

 

To understand the mechanical loss of a solid, an appropriate 
model is needed. 



STANDARD ANELASTIC SOLID 
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Anelasticity of solids 

A closer look to internal damping I 

A lot of energy dissipating mechanisms can be described by some kind of 
stress-induced relaxation process of an internal order parameter. Zener was 
the first one to describe this behaviour using a combination of two springs 
and dashpot, called Maxwell-unit: 

Spring 
(Hookean solid) 

Dashpot (piston 
in viscous liquid) 
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Anelasticity of solids 

A closer look to internal damping II 
Nowick and Berry, Anelastic Relaxation In Crystalline Solids (1972), give a 
dependence of the loss angle as follows: 
 

   𝜙 = Δ
𝜔𝜏

1+𝜔2𝜏2
 

 

Δ...relaxation strength, 

𝜔…angular frequency, 

𝜏…time constant for a specific loss process 
 

A maximum (Debye peak) occurs in case 

of 𝜔𝜏 = 1, resonant coupling of the relaxation 

process (time constant 𝜏) and the disturbance 

(frequency 𝜔, e.g. moving an atom out of its 

point of rest). Often 𝜏 is related to temperature 

and activation energy like: 𝜏 = 𝜏0𝑒
𝐸𝑎/𝑘𝐵𝑇 
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Anelasticity of solids 

A closer look to internal damping III 

In a real solid one may find more than one dissipating mechanism. The loss angle is 
related as follows: 
 

   𝜙 = Q−1 = Δ𝐸/2𝜋𝐸𝑡𝑜𝑡 
 

ΔE...energy dissipation, 

𝐸𝑡𝑜𝑡…total energy, 
 

 

Thus we can sum up the loss of different mechanisms to the total loss of the 
system: 
 

𝜙𝑡𝑜𝑡 = 𝜙𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝜙𝑠𝑢𝑟𝑓𝑎𝑐𝑒 + 𝜙𝑐𝑜𝑎𝑡𝑖𝑛𝑔 + 𝜙𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 +⋯ 
 

External losses result from e.g. gas damping or friction. To be minimized! 



MEASUREMENT TECHNIQUES 
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Measuring mechanical loss 

Liquid He cryostat in Jena: 

1. Experimental platform 

2. Probe chamber 

3. 4K-shield 

4. 80K-shield 

5. Isolation chamber 

6. Optical windows 

7. LHe-tank 

8. LN2-tank 
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Measuring mechanical loss 

Excitation of resonant vibrations in the solid: 
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Measuring mechanical loss 

Free ring down of the resonant vibration: 

Free ring down of the 
oscillation at 𝑓0: 

 

𝑥 𝑡 = 𝑥0 exp
−𝑡

𝜏
cos𝜔0𝑡 

 

Ratio of dissipated to 
stored energy per cycle 
yields the mechanical loss: 

 

𝜙 =
Δ𝐸

2𝜋𝐸
=

1

𝜋𝑓𝜏
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BULK SILICON 
Mechanical loss measurement on 
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Silicon (111) Ø 65 mm x 50 mm 
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• Debye peak in all modes indicates a strong loss mechanism. 
• Temperature dependence refers to thermal activation. 
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Mechanical loss and Arrhenius plot 

The peak is reached at: 

1 = 𝜔𝜏 = 𝜔 𝜏0 exp
𝐸𝐴
𝑘𝐵𝑇

 

 

Arrhenius plot: 

ln𝜔 = − ln 𝜏0 −
𝐸𝐴
𝑘𝐵

×
1

𝑇
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Arrhenius plot for Ø 65 x 50 mm sample 

7.75x10
-3

8.00x10
-3

8.25x10
-3

8.50x10
-3

8.75x10
-3

9.00x10
-3

12.5

13.0

13.5

14.0

14.5

ln
(

)

1/T [1/K]

 experimental data

 ln()= -ln(
0
)-E

A
/k

B
T

            
0
 =    103 fs

            E
A
 =   168.2 meV



Group Seminar at ICRR 26th April 2013 Gerd Hofmann 34 / 53 

Friedrich-Schiller-Universität Jena   

Interstitial oxygen in silicon 

• Czochralski grown crystals with 
oxygen impurities 

• Oxygen covalently bonded 
between two silicon atoms 

• Potential loss mechanisms: 

– Rotation due to six-fold 
symmetry (𝐸𝐴 too high) 

– Diffusion by hoping (𝐸𝐴 too low) 

• Annealing did not change the 
loss peak – exclusion of kinks 
and dislocations 

 

 



BULK SAPPHIRE 
Mechanical loss measurement on 
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Measured mechanical loss of sapphire 

A strong loss peak at 35 K was observed at all measured frequencies. 
The continous line represents the so called Akhiezer-loss of the solid. 
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Akhiezer damping in bulk sapphire 

Loss peak at 35 K is linked to Akhiezer loss (interaction of acoustic 
and thermal phonons)  as follows: 
 

𝜙 =
𝑇𝐶𝛾2

𝜈2

𝜔𝜏𝑝

1+ 𝜔𝜏𝑝
2 where 𝜏𝑝 =

3 𝜅

𝐶𝜌𝜈2
. 

 

[A. Akhieser: On the absorption of sound in solids. Journal of Physics (1939)] 

[V. B. Braginskyet al.: Systems with Small Dissipation.The University of  

Chicago Press, Chicago and London (1985)] 

 

𝐶… heat capacity, 𝛾… Grüneisen‘s constant,  

𝜈… solid‘s speed of sound, 
𝜏𝑝… lifetime of thermal phonons, 

𝜅… heat conductivity, and 𝜌… density of material. 
 

   Akhiezer loss can not be overcome thus it is an intrinsic limit. 
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SAPPHIRE FIBERS 
Mechanical loss measurement on 
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Sapphire fibers measured in Jena 

• MolTech fibers (4 in total) 

– single nail head with flat 
Ø 10 mm x 5 mm 

– fiber Ø 1.8 mm 

– 1 unbroken (350 mm) 

– 1 broken (86 mm & 264 mm) 

• Impex fibers (5 in total) 

– double nail head 
Ø 10 mm x 5 mm 

– fiber Ø 1.6 mm 

– total lenght 100 mm 
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Measurement setup 

• Use of massive cooper supports and clamps: 

• Flat drill hole vs. 
Cone drill hole 

• Electrostatic driving 
plates for excitation 

• Optical readout 
by use of shaddow 
sensor 

• Ring down  
technique 

• Liquid helium  
cryostat 
 𝑇 = 5…300 K 
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• Lowest obtained loss on sapphire fiber so far: 5 × 10−8 at 5.2 K 

• Measured loss dominated by hermo elastic damping (TED) above 60 K 

MolTech fiber Ø 1.8 mm x 350 mm, clamped in cone 
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Thermo elastic damping in sapphire fibers 

Thermo elastic damping (TED) occurs from irreversible heat 
flow between compressed and strechted areas of the fiber. 
The loss is given by: 

 

𝜙 =
𝑌𝑇

𝜌𝐶

𝜔𝜏𝑇𝐸
1 + 𝜔𝜏 2

 

 

𝜏𝑇𝐸 = 
1

2.16 × 2𝜋
 
𝜌𝐶𝑑

𝜅
 

 

[C. Zener : Internal Friction in Solids: I. Theory of Internal Friction in Reeds. Physical Review 52 (1937)] 
[C. Zener : Internal Friction of Solids: II.General Theory of Thermoelastic Internal Friction. Physical Review 53 (1938)] 
 

𝑌… Young‘s Modulus, 

𝜏𝑇𝐸…characteristic time, 

𝑑… diamter of the fiber 
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Impex fiber No.3, attached head clamped in cone 

• Again: TED above 60 K seems to limit the loss 

• Low temperature behaviour is affected by interactions between the fibre and 
the support (still under investigation) 
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RECENT WORK AT ICRR 
Mechanical loss of sapphire fibres 
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Cooling cycle of cryostat 
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Results so far (preliminary): 

0 30 60 90 120 150 180 210 240 270 300
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

m
e
c
h
a
n
ic

a
l 
lo

s
s
 

temperature in K

  87Hz

  1240Hz

  3676Hz

  35132Hz



Group Seminar at ICRR 26th April 2013 Gerd Hofmann 47 / 53 

Friedrich-Schiller-Universität Jena   

Disassembling the cryostat for cryo cooler change 

Removed the 
experiment … 

… and the 
shields already. 



THERMAL CONDUCTIVITY OF A 
SAPPHIRE FIBRE 

Measurements of the 
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Thermal conductivity measurement 

• Measured with the broken piece 
of MolTech fiber: 

– Ø 1.8 mm 

– 264 mm in length 

• Copper clamps to attach 

– the heater 

– the sensors 

– the heat sink 
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Setup and measurement procedure 

Measurement Procedure: 

1. Set a heater power and wait until all sensors reach 
thermal equilibrium again (steady heat flow): 
 

𝑃𝐻𝑒𝑎𝑡𝑒𝑟 =
𝐴

𝐿
𝜅 𝑇1 − 𝑇2  

 

2. Repeat for different heater powers, 
Δ𝑇 = 𝑇1 − 𝑇2 will change 

3. Slope of Δ𝑇 over 𝑃𝐻𝑒𝑎𝑡𝑒𝑟 yields 𝜅 after: 
 

𝜅 =
𝐿

𝐴

𝑑𝑃

𝑑𝑇
 

 

𝜅… therm. Conductivity, 𝐿… temp-sensor distance, 

𝐴… cross section, ΔT… temperature difference, 

𝑃𝐻𝑒𝑎𝑡𝑒𝑟… electric power 
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Thermal conductivity of sapphire 

The fibres thermal  
conductivity is 
different from bulk 
sapphire below 50 K 
 

At temperatures 
below 10 K thermal 
conductivity is limited 
by size effect: Ø 0.16 mm 
yields 100 W/m/K 
 
[Tomaru et al.: Maximum heat transfer along 
a sapphire suspension fiber for a cryogenic 
 interferometric gravitational wave detector, 
in Physics Letter A (2002)] 
 

For the given fibre geometry a surface and heat treatment might change the 
thermal conductivity to slightly higer values (a few 10%) 
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 1.8mm MolTech fiber

 Bulk sapphire (recommended)

 1.55mm, unpolished

 2.47mm, unpolished, annealed

 2.52mm, polished, annealed

[Y. S. Touloukian et al.: Thermophysical properties of matter, 
Volume 2. Thermal Conductivity - Nonmetallic Solids (1970)] 
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Estimation of heat extraction from fibers 

• Let‘s assume: 

• Length 𝐿 = 30 cm 

• Cross section 𝐴𝑤 (Ø 1.8 mm) 

• Upper mass UM at 16 K 

• Test mass TM at 20K 

• Thermal conductivity of 𝜅 = 3 × 103
𝑊

𝑚×𝐾
  

• Calculate heat extraction of one fiber: 
 

 𝑄 =
𝐴𝑤

𝐿
𝑘 𝑇𝑇𝑀 − 𝑇𝑈𝑀 ≈ 100 𝑚𝑊 

 

• Around 1 W needs to be extracted for KAGRA 
 

   Futher investigations and improvements are needed! 
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Summary 

• Mechanical loss strongly affects high precision metrology like GWD 
in terms of noise 

• The mechanical loss depends on intrinsic properties of solids and 
has to be studied well for further improvements 

• Silicon and sapphire are very promising for future cryogenic GWD 
because of their low mechanical losses at low temperature 

• Sapphire fibres will fulfil KAGRAs requirements in terms of 
mechanical loss and heat extraction with some improvements 

• Exchange in ELiTES works quite well, technical issues will be solved 

 

Thank you very much! 


