Mirror quality and interferometer performance Hiro Yamamoto - Caltech LIGO

- Introduction
- Gaussian beam and Modal model
- Cavity basic
- PSD, BRDF and loss
- Mirror polishing and coating
- Thermal effects
- Not so nice looking mirrors

Introduction idealized vs reality

Figure 2: Possible configurations of aLIGO in the early commissioning phase, with 25 W of input power. As reference, the nominal aLIGO curves and the best S 6 sensitivity are also included.

Initial LIGO optics and Fields idealized vs reality

Gaussian beam and Modal model

- Gaussian beam : stationary state in a two mirror cavity (FP)

$$
\begin{aligned}
& G_{00}(x, y, z, t)=G_{00}(x, y, z) \exp [i(\omega \cdot t-k \cdot z)] \\
& G_{00}(x, y, z)=\sqrt{\frac{2}{\pi}} \frac{1}{w(z)} \exp \left(-r^{2}\left(\frac{1}{w(z)^{2}}+i \frac{k}{2 R(z)}\right)+i \cdot \eta(z)\right) \\
& w(z)^{2}=w_{0}^{2}\left(1+\frac{z^{2}}{z_{0}^{2}}\right), \quad R(z)=z+\frac{z_{0}^{2}}{z}, \eta(z)=a \tan \left(\frac{z}{z_{0}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& H G_{m n}=G_{00}(x, y, z, t) \sqrt{\frac{1}{2^{m+n} m!n!}} H_{m}\left(\frac{\sqrt{2} x}{w(z)}\right) H_{n}\left(\frac{\sqrt{2} y}{w(z)}\right) \exp [i(m+n) \eta(z)] \\
& L G_{p m}=G_{00}(x, y, z, t) \sqrt{\frac{p!}{(p+|m|)!}} \exp (\operatorname{im\varphi }) L_{p}^{|m|}\left(\frac{2 r^{2}}{w(z)^{2}}\right) \exp [i(2 p+|m|) \eta(z)]
\end{aligned}
$$

Gaussian beam and Modal model

- Tilt

$$
\begin{aligned}
E_{r e f}(\theta) & =G_{00}(\theta=0) \cdot \exp \left(i \omega t-i\left(x \cdot k_{x}+z \cdot k_{z}\right)\right) \\
& =G_{00} \cdot(1-i \mathrm{x} \cdot \mathrm{k} \cdot \theta) \\
& =\mathrm{G}_{00} \cdot\left(1-i \cdot \frac{1}{\sqrt{2}} H_{1}\left(\frac{\sqrt{2} x}{w(z)}\right) \cdot \frac{\theta}{\Theta(z)}\right) \\
& =G_{00}-i \frac{\theta}{\Theta(z)} \cdot G_{10} \\
\Theta(z) & =\frac{1}{\pi} \frac{\lambda}{w(z)}, \mathrm{H}_{1}(x)=2 x
\end{aligned}
$$

- curvature mismatch

$$
\begin{aligned}
E_{r e f}(\delta R) & =G_{00}\left(R=R_{i n}\right) \cdot \operatorname{Exp}\left[-i k r^{2}\left(-\frac{2}{2 R_{m}}\right)\right] \\
& =G_{00}(R=\infty) \cdot \operatorname{Exp}\left[i k r^{2}\left(\frac{1}{2 R_{i n}}-\left(\frac{1}{R_{i n}}-\frac{1}{R_{m}}\right)\right)\right] \\
& \approx G_{00}(R=\infty) \cdot \operatorname{Exp}\left[i r^{2}\left(\frac{1}{2 R_{i n}}\right)\right] \cdot\left(1-i k r^{2} \frac{\delta R}{R_{i n}^{2}}\right) \\
& =G_{00}\left(R=-R_{i n}\right)\left(1-i k \frac{w^{2}}{2} \frac{\delta R}{R_{i n}^{2}}\left(1-L_{1}^{0}\left(\frac{2 r^{2}}{w^{2}}\right)\right)\right) \\
& \approx G_{00}\left(R=-R_{i n}\right)+i \pi \frac{w^{2}}{\lambda R_{i n}} \frac{\delta R}{R_{i n}} L G_{1}^{0}\left(R=-R_{i n}\right) \\
\delta R & =R_{m}-R_{i n}, L_{1}^{0}(r)=1-r
\end{aligned}
$$

Gaussian beam and Modal model

- Cavity field and Gouy phase

$$
\begin{aligned}
& E_{1}=E_{0} \cdot r_{1} r_{2} \cdot \exp [i 2 \phi] \\
& \phi=\left\{\begin{array}{c}
m+n+1 \\
2 p+|m|+1
\end{array}\right\} \Delta \eta-k L
\end{aligned}
$$

$$
\Delta \eta=\eta\left(z_{2}\right)-\eta\left(-z_{1}\right)=a \cos \left(1-\frac{L}{R}\right) \text { for } R_{1}=R_{2}=R
$$

- Resonance condition
» $\phi=n \pi$ for main mode
» non resonant for other modes

Cavity basic

Phase cancelation and noise enhancement

Phase cancelation

Only carrier (injected field which resonate in the cavity) not sideband (not resonating in the cavity) nor signal sideband (induced in the cavity)

$$
\begin{aligned}
& T_{2}=t_{2}^{2}+\text { loss in the arm } \\
& -\frac{2}{\mathrm{tc}} /\left\{\left(1+\frac{\mathrm{Tc}}{4}\right)\left(1+\frac{4 \mathrm{~T} 2}{\mathrm{~T} 1 \mathrm{Tc}}\right)\right\} \\
& T_{1} \cdot T_{C}=5 \times 10^{-4} \\
& \underset{\substack{ \\
t_{c}}}{\stackrel{\Downarrow}{\longleftrightarrow}}\left(t_{1}\right. \\
& \xrightarrow[t_{2}]{\sum_{2}} \\
& =500 \mathrm{ppm}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{E_{R C}}{E_{s c r}}=A \quad E_{R C} \cdot \xi \sim E_{s e c} \cdot \epsilon \\
& \underset{\substack{\text { Regyling gain } \\
\sim 5}}{\mathrm{Escr}^{\prime}} \frac{\xi}{\epsilon}=\frac{E_{\text {SRC }}}{E_{R C}}=\frac{1}{A}
\end{aligned}
$$

Surface structure with different spatial distribution

LIGO-G1300120-v1 JGW-G1301555-v1

Get-together meeting of JGW March 1st, 2013

LIGO

Scattering by aberration

$$
\begin{aligned}
& E_{r e f}=E_{r e f}^{0} \cdot \exp (i 2 k \delta(x, y)) \quad d P=\iint d x d y\left|E_{r e f}^{0}\right|^{2} 4 k^{2} \delta(x, y)^{2} \\
& =E_{r e f}^{0} \cdot\left(1+i 2 k \delta-2(k \delta)^{2}\right) \\
& =E_{r e f}^{0} \cdot\left(1-2(k \delta)^{2}\right)+E_{r e f}^{0} \cdot i 2 k \delta \\
& =P_{r e f}^{0}\left(\frac{4 \pi \sigma}{\lambda}\right)^{2} S \\
& \theta=k_{x} / k=\lambda_{\text {laser }} / \lambda_{\text {space }} \\
& \sigma^{2} \equiv \iint d x d y \delta(x, y)^{2} / S \\
& =\int d f P S D_{1 D}(f) \\
& \text { for } \delta(x, y)=\delta_{0} \sin \left(k_{x} x\right) \\
& E_{\text {ref }}^{0} \cdot i 2 k \delta=E_{\text {ref }}^{0} \cdot i 2 k \delta_{0} \sin \left(k_{x} x\right) \\
& =E_{\text {ref }}^{0} \cdot\left(k \delta_{0}\left(\exp \left(i k_{x} x\right)-\exp \left(-i k_{x} x\right)\right)\right) \\
& =E^{0} \frac{2 \pi \delta_{0}}{\lambda}\left[\exp \left(-i\left(k z-k_{x} x\right)\right)-\exp \left(-i\left(k z+k_{x} x\right)\right)\right] \\
& \text { simple loss }
\end{aligned}
$$

LIGO
 aLIGO optics scattering loss by polished surface

LIGO

Peeking at LIGO mirror profile

LIGO

BRDF \neq PSD

- BRDF
" how light is reflected by an opaque surface
- PSD
" spectral density of the surface

$B R D F(\theta)=\left(\frac{4 \pi}{\lambda^{2}}\right)^{2} P S D_{2 D}(f)=\left(\frac{4 \pi}{\lambda^{2}}\right)^{2} C \frac{P S D_{1 D}(f)}{f}$

$$
\lambda_{s}=\frac{1}{f} \hat{\jmath} \quad \overline{\theta=\frac{\lambda_{\text {laser }}}{\lambda s p a c e}}=f \cdot \lambda_{\text {laser }}
$$

Fig. 9. (Color online) BRDF versus scattering angle for the HRM.

Polishing and coating ETM04 : coating is tough

Polishing by Coastline and ASML Requirement and result of ITM04

Surface	Specification Parameter	Location	Specification Value	Actual Value	Pass/Fail
1	Spherical, CC, RoC	Central 160 mm	$\begin{aligned} & 1934 \mathrm{~m}- \\ & 5 \mathrm{~m} /+15 \mathrm{~m} \end{aligned}$	1938.61 m	PASS
	Radius Difference from all ITMs	Central 160 mm	$1938.53 m \pm 3 \mathrm{~m}$	0.08 m	PASS
	Astigmatism Amplitude ($\mathrm{Z}_{2.2}$)	Central 160 mm	$\sigma_{\text {RMS }}<3 \mathrm{~nm}$	0.12 nm	PASS
	Figure Error (LSF) $<1 \mathrm{~mm}^{-1}$	Central 300 mm	$\sigma_{\text {RMS }}<2.5 \mathrm{~nm}$	0.37 nm	PASS
	$\mathrm{z}_{0,0} \cdot \mathbf{Z}_{1,1,1} \cdot \mathbf{z}_{2,0} \cdot \mathbf{Z}_{2,2}$ Fit	Central 160mm	$\sigma_{\text {RMS }}<0.3 \mathrm{~nm}$	0.15 nm	PASS
	Error (HSF) $1-750 \mathrm{~mm}^{-1}$	Center, Ø60 $\mathrm{mm}, \varnothing 120 \mathrm{~mm}$	$\sigma_{\text {RMS }} \leq 0.16 \mathrm{~nm}$	$0.137 \mathrm{~nm}$	PASS
Requirement by simulation Actually delivered					
$\mathrm{LSF}(>2 \mathrm{~mm}): \sigma<0.5 \mathrm{~nm}$ for loss $<20 \mathrm{ppm}, \sigma=0.15 \mathrm{~nm}->2 \mathrm{ppm}$					
LIGC $\operatorname{HSF}(<1 \mathrm{~mm}): \sigma=0.137 \mathrm{~nm}->\sim 3 \mathrm{ppm}(<1 \mathrm{~mm}),<6 \mathrm{ppm}(<2$ JGW-G1100517					

Coating by LMA ITM04 and ITM08

		Round trip loss (ppm)	Non 00 mode in cavity (ppm)	LG20 mode in cavity (ppm)
polished	ITM04	2.9	3.2	0
	ITM08	3.0	3.5	0
	ITM04	2.7	8.8	2.8
	ITM08	3.0	9.0	4.9

Table 1 Cavity quality factors

Coating by LMA ETM01

PSD : coated vs polished

Using matlab to extract the spiral pattern, and use it as the phasemap in SIS

LMA ETM01 coating accepting test short wavelength spiral pattern

assfied with spial ETM - Fied with no aberation

- SIS analysis to understand the effect \%hy this pattern
- Round trip loss ~6ppm $<$ OK
- Any other effects
" Field aberration due to this pattern
- Field in FP with this map - Field in idealistic FP ${ }^{\circ}$
- Very fine grid sizes to make sure FFT is OK
" Mode analysis if any mode could dominate
- No dominant mode for LGpm ($2 p+m<25$) and HGmn ($m+n<25$)
" If ITM has similar pattern, can they interfere
- ITM = MAPPING
(DATAFILE("ETM01pattern.dat"), "-x","y") * 0.5
- Loss = loss by ETM + loss by ITM no additional by interference

LIGO
 LMA ETM01 coating accepting test long wavelength central plateau

- Old coating system, one at a time
" The beam size on ETM is larger than that on ITM and the plateau size on ETM needs to be 20\% wider, when coating to coating variation is taken into account
- New coating using the planetary system, a pair at a time
" Higher order mode, mostly LG20, in the FP cavity is $\sim 100 \mathrm{ppm}$
- Better than old, 120ppm, and two ETMs will be "identical", but is this good enough?
- The plateau size is around the same as the old one
- Astigmatism uncertainty due to the substrate is not a major issue
- Asymmetry in the far outside is better (smaller) in the new coating
" Coupled cavity simulation
- LG20 in SRC shows no increase of LG20 by the mode healing
- Stable signal recycling cavity kills LG20 in SRC
- LG20 in PRC is ~2000ppm increase by the ETM coating aberration

Thermal distortion test mass

Thermal distortion BS

Not so nice looking mirrors

- BS02 maps

Get-together meeting of JGW March 1st, 2013

LIGO
 Why ROC(ITM) < ROC(ETM) Power loss on RM3

Higher order mode fraction on SRM

