

Mirror quality and interferometer performance Hiro Yamamoto - Caltech LIGO

- Introduction
- Gaussian beam and Modal model
- Cavity basic
- PSD, BRDF and loss
- Mirror polishing and coating
- Thermal effects
- Not so nice looking mirrors

1

Introduction idealized vs reality

Figure 2: Possible configurations of aLIGO in the early commissioning phase, with 25W of input power. As reference, the nominal aLIGO curves and the best S6 sensitivity are also included.

LIGO-G1300120-v1 JGW-G1301555-v1

Get-together meeting of JGW March 1st, 2013

2

Initial LIGO optics and Fields idealized vs reality

LIGO-G1300120-v1 JGW-G1301555-v1

Gaussian beam and Modal model

• Gaussian beam : stationary state in a two mirror cavity (FP)

$$\begin{array}{l}
\mathbf{R}^{1} \qquad \mathbf{W}^{2} \qquad \mathbf{R}^{2} \qquad G_{00}(x,y,z,t) = G_{00}(x,y,z) \exp[i(\omega \cdot t - k \cdot z)] \\
G_{00}(x,y,z) = \sqrt{\frac{2}{\pi}} \frac{1}{w(z)} \exp(-r^{2}(\frac{1}{w(z)^{2}} + i\frac{k}{2R(z)}) + i \cdot \eta(z)) \\
w(z)^{2} = w_{0}^{2}(1 + \frac{z^{2}}{z_{0}^{2}}), \quad R(z) = z + \frac{z_{0}^{2}}{z}, \quad \eta(z) = a \tan(\frac{z}{z_{0}})
\end{array}$$

$$HG_{mn} = G_{00}(x, y, z, t) \sqrt{\frac{1}{2^{m+n}m!n!}} H_m(\frac{\sqrt{2}x}{w(z)}) H_n(\frac{\sqrt{2}y}{w(z)}) \exp[i(m+n)\eta(z)]$$
$$LG_{pm} = G_{00}(x, y, z, t) \sqrt{\frac{p!}{(p+|m|)!}} \exp(im\varphi) L_p^{|m|}(\frac{2r^2}{w(z)^2}) \exp[i(2p+|m|)\eta(z)]$$

LIGO-G1300120-v1 JGW-G1301555-v1

Gaussian beam and Modal model

• Tilt

 \sim

$$\begin{split} E_{ref}(\theta) &= G_{00}(\theta = 0) \cdot \exp(i\omega t - i(x \cdot k_x + z \cdot k_z)) \\ &= G_{00} \cdot (1 - i \cdot x \cdot k \cdot \theta) \\ &= G_{00} \cdot (1 - i \cdot \frac{1}{\sqrt{2}} H_1(\frac{\sqrt{2}x}{w(z)}) \cdot \frac{\theta}{\Theta(z)}) \\ &= G_{00} - i \frac{\theta}{\Theta(z)} \cdot G_{10} \\ \Theta(z) &= \frac{1}{\pi} \frac{\lambda}{w(z)}, \ H_1(x) = 2x \end{split}$$

curvature mismatch

$$E_{ref}(\delta R) = G_{00}(R = R_{in}) \cdot Exp[-ikr^{2}(-\frac{2}{2R_{m}})]$$

$$= G_{00}(R = \infty) \cdot Exp[ikr^{2}(\frac{1}{2R_{in}} - (\frac{1}{R_{in}} - \frac{1}{R_{m}}))]$$

$$\approx G_{00}(R = \infty) \cdot Exp[ir^{2}(\frac{1}{2R_{in}})] \cdot (1 - ikr^{2}\frac{\delta R}{R_{in}^{2}})$$

$$= G_{00}(R = -R_{in})(1 - ik\frac{w^{2}}{2}\frac{\delta R}{R_{in}^{2}}(1 - L_{1}^{0}(\frac{2r^{2}}{w^{2}})))$$

$$\approx G_{00}(R = -R_{in}) + i\pi\frac{w^{2}}{\lambda R_{in}}\frac{\delta R}{R_{in}}LG_{1}^{0}(R = -R_{in})$$

 $\delta R = R_m - R_{in}, \ L_1^0(r) = 1 - r$

LIGO-G1300120-v1 JGW-G1301555-v1

Gaussian beam and Modal model

Cavity field and Gouy phase

$$E_1 = E_0 \cdot r_1 r_2 \cdot \exp[i2\phi]$$
$$\phi = \begin{cases} m+n+1\\ 2p+|m|+1 \end{cases} \Delta \eta - kL$$

$$\Delta \eta = \eta(z_2) - \eta(-z_1) = a\cos(1 - \frac{L}{R})$$
 for $R_1 = R_2 = R$

- Resonance condition
 - » $\phi = n\pi$ for main mode
 - » non resonant for other modes

Cavity basic Resonant vs non-resonant

Cavity basic Phase cancelation and noise enhancement

Only carrier (injected field which resonate in the cavity) not sideband (not resonating in the cavity) nor signal sideband (induced in the cavity)

LIGO-G1300120-v1 JGW-G1301555-v1

Cavity basic Coupled cavity

LIGO-G1300120-v1 JGW-G1301555-v1

Cavity basic Mode healing

LIGO-G1300120-v1 JGW-G1301555-v1

Surface structure with different spatial distribution

Scattering by aberration

$$\begin{split} E_{ref} &= E_{ref}^{0} \cdot \exp(i2k\delta(x,y)) & dP = \iint dx \, dy \left| E_{ref}^{0} \right|^{2} 4k^{2}\delta(x,y)^{2} \\ &= E_{ref}^{0} \cdot (1+i2k\delta-2(k\delta)^{2}) \\ &= E_{ref}^{0} \cdot (1-2(k\delta)^{2}) + E_{ref}^{0} \cdot i2k\delta \\ &= \int dx \, dy \delta(x,y)^{2} / S \\ &= \int df \, PSD_{1D}(f) \\ for \, \delta(x,y) &= \delta_{0} \sin(k_{x}x) \\ &= E_{ref}^{0} \cdot i2k\delta = E_{ref}^{0} \cdot i2k\delta_{0} \sin(k_{x}x) \\ &= E_{ref}^{0} \cdot (k\delta_{0}(\exp(ik_{x}x) - \exp(-ik_{x}x))) \\ &= E_{ref}^{0} \cdot (k\delta_{0}(\exp(ik_{x}x) - \exp(-ik_{x}x)) \\ &= E_{ref}^{0} \cdot (k\delta_{0}(\exp(-ik_{x}x) - \exp(-ik_{x}x)$$

simple loss

LIGO-G1300120-v1 JGW-G1301555-v1

aLIGO optics scattering loss by polished surface

Peeking at LIGO mirror profile

BRDF ≠PSD

• BRDF

» how light is reflected by an opaque surface

PSD

» spectral density of the surface

$$BRDF(\theta) = \left(\frac{4\pi}{\lambda^2}\right)^2 PSD_{2D}(f) = \left(\frac{4\pi}{\lambda^2}\right)^2 C \frac{PSD_{1D}(f)}{f}$$

$$\lambda_s = \frac{1}{f} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \Theta = \frac{2 \ln s_{er}}{\lambda_s} = f \cdot \lambda_{gaser}$$

Get-together meeting of JGW March 1st, 2013

LIGO-G1300120-v1 JGW-G1301555-v1

Polishing and coating ETM04 : coating is tough

Polishing by Coastline and ASML

Requirement and result of ITM04

Surface	Specification Parameter	Location	Specification Value	Actual Value	Pass/Fail
1	Spherical, CC, RoC	Central 160 mm	1934 m - 5m/+15m	1938.61 m	PASS
	Radius Difference from all ITMs	Central 160 mm	1938.53 m ± 3 m	0.08 m	PASS
	Astigmatism Amplitude (Z _{2,2})	Central 160 mm	σ _{RMS} < 3 nm	0.12 nm	PASS
	Figure Error (LSF) <1mm ⁻¹	Central 300 mm	σ _{RMS} < 2.5 nm	0.37 nm	PASS
	$Z_{0,0} \cdot Z_{1,1} \cdot Z_{2,0} \cdot Z_{2,2}$ Fit	Central 160mm	σ _{RMS} < 0.3 nm	0.15 nm	PASS
	Error (HSF) 1-750mm ⁻¹	Center, Ø60 mm, Ø120 mm	σ _{RMS} ≤ 0.16 nm	0.137 nm	PASS

Coating by LMA ITM04 and ITM08

Coating by LMA ETM01

measured at Caltec - Z1~Z7

P-V 1 nm

Using matlab to extract the spiral pattern, and use it as the phasemap in SIS

0.1

tg @ ICRR on August 4, 2011

LMA ETM01 coating accepting test short wavelength spiral pattern

- SIS analysis to understand the effect by this pattern
- Any other effects
 - » Field aberration due to this pattern
 - Field in FP with this map Field in idealistic FP°
 - Very fine grid sizes to make sure FFT is OK
 - » Mode analysis if any mode could dominate
 - No dominant mode for LGpm (2p+m<25) and HGmn (m+n<25)
 - » If ITM has similar pattern, can they interfere
 - ITM = MAPPING (DATAFILE("ETM01pattern.dat"), "-x","y") * 0.5
 - Loss = loss by ETM + loss by ITM no additional by interference

spiral pattern on ET

LIGO-G1100857 JGW-G1100517 Hiro Yamamoto LCGT F2F mtg @ ICRR on August 4, 2011

20

LMA ETM01 coating accepting test long wavelength central plateau

Old coating system, one at a time

- » The beam size on ETM is larger than that on ITM and the plateau size on ETM needs to be 20% wider, when coating to coating variation is taken into account
- New coating using the planetary system, a pair at a time
 - » Higher order mode, mostly LG20, in the FP cavity is ~100ppm
 - Better than old, 120ppm, and two ETMs will be "identical", but is this good enough?
 - The plateau size is around the same as the old one
 - Astigmatism uncertainty due to the substrate is not a major issue
 - Asymmetry in the far outside is better (smaller) in the new coating
 - » Coupled cavity simulation
 - LG20 in SRC shows no increase of LG20 by the mode healing
 - Stable signal recycling cavity kills LG20 in SRC
 - LG20 in PRC is ~2000ppm increase by the ETM coating aberration

Thermal distortion test mass

LIGO-G1300120-v1 JGW-G1301555-v1

abs

Thermal distortion BS

LIGO-G1300120-v1 JGW-G1301555-v1

Get-together meeting of JGW Ma

Not so nice looking mirrors

Why ROC(ITM) < ROC(ETM) Power loss on RM3

LIGO-G1300120 JGW-G1301555-v1