

Stray-Light Control in Interferometers

Masaki Ando (National Astronomical Observatory of Japan) Most materials by T. Akutsu, a leader of AOS subsystem

Stray-Light Noise

•Stray light noise (SLN) is like a ghost in an interferometer.

- Most of interferometric GW antennas suffered from it in the final stage of commissioning. Sensitivities are often limited by SLN.
 - It is hard to identify the origin, and to mitigate SLN.
 - In TAMA, several set-ups were replaced or re-installed during noise-hunting process, hoping to reduce SLN.

In large-scale interferometer, like KAGRA, we should consider about SLN from the design phase.

Mechanism of Stray-Light Noises

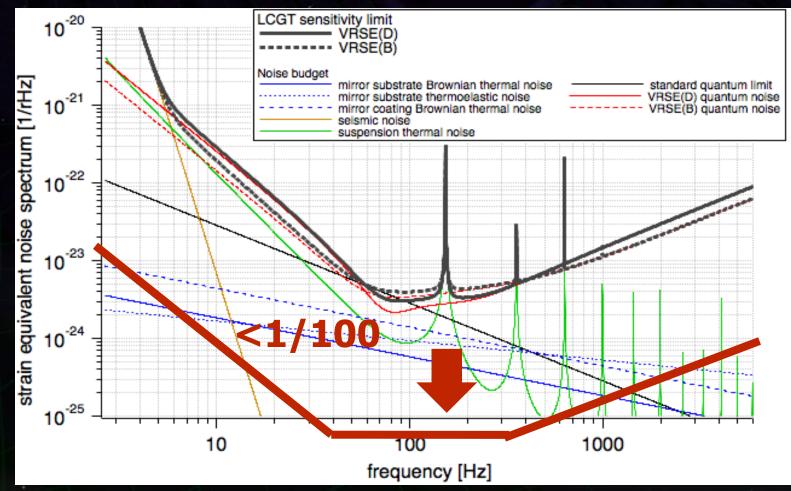
• Stray light occurs at various place in an interferometer.

- Laser beam diffraction
- Scattering on the surfaces and in substrate of optics

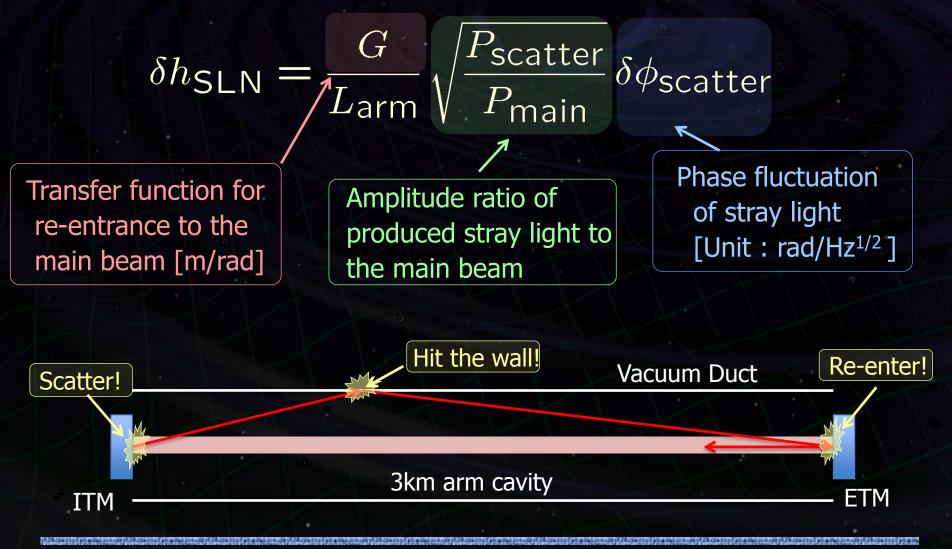
- Small reflection on AR surfaces of optics

Stray light hits something with vibration, such as wall of vacuum duct, and re-enter to the main laser beam.
Changes in the optical-path length difference of the stray light cause phase noises on the main beam, which cannot be distinguished from GW signal.

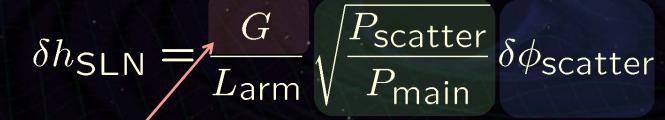
Some Examples

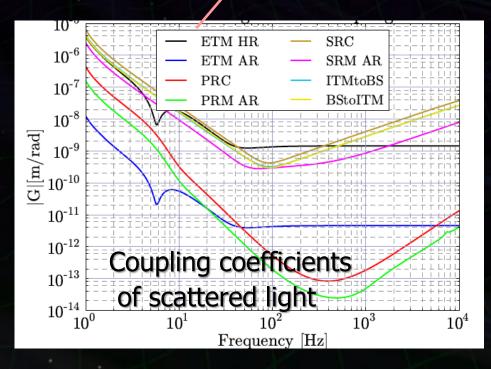


Requirement for SLN Level


•Safety margin of 2-orders are set, compared with KAGRA sensitivity curve

Quantitative Estimation


•SLN contribution to strain sensitivity.



Quantitative Estimation

•SLN contribution to strain sensitivity.

Requirements on
Amount of scattered light
Vibration isolation for mid-path components

• Strategy : Absorb most of the stray light by baffles.

•What we should consider about are ...

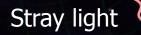
- Quality of optics
 - Amount and angular dependence of stray light (Scatter on mirror surface, AR surface, Diffraction)
- Optical design of baffles and installation positions Ray-tracing and shape design Surface treatment for better absorption
- Vibration isolation of baffles.

Baffle Types

Baffles inside 3km arm ducts
 Baffles in radiation shield ducts (Cryogenic)
 Baffles for small-angle scatter/diffraction
 Baffles for large-angle scatter (Cryogenic)
 Other baffles and dampers

3km

Cryogenic part


- Vacuum

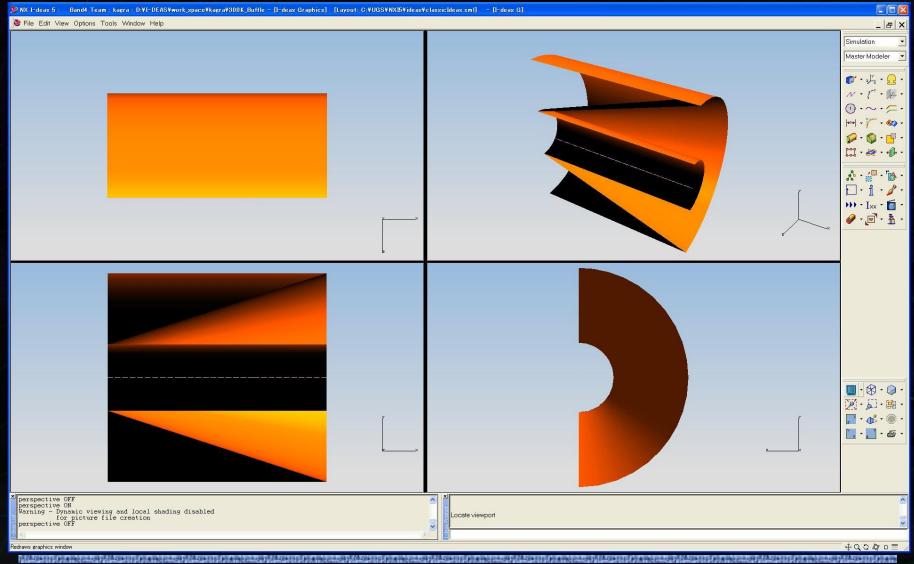
Baffle Design

• Basic concept : absorption by multiple reflection

Main beam

Baffle

Specifications


- Back reflection \rightarrow Shape, Surface treatment
- Vibration isolation
- Production procedure, Cost, Size, Weight
- Vacuum and Cryogenic compatibilities, and Thermal conductivity

Baffle Design

11

• Basic concept : absorption by multiple reflection

Ray-Tracing Simulation

🕝 Zemax 12 EE - 33816 - C:¥Users¥decihertz¥Documents¥Zemax¥SAMPLES¥wide_baffle_20120817v31.zmx 🗖 🗊 🐹														
File Editors System Analysis Tools Reports Macros Extensions Window Help														
New Ope Sav	Sas Bac Res	NCE MFE MCE TDE	E Upd Upa (Gen Wav L3n	LSn Obv Rtc	Dvr Rdb Dis Gmp	Opt Glb Ham	Tol Gla ABg Sfv X	is Len Pre	Chk Vop				
🧐 Non-Sequent	tial Component Editor													
Edit Solves	Tools View Help													
Obje	ct Type	Z Position	Tilt About X	Tilt About Y	Tilt About Z	Material	# Layout Rays	Vз	Power(Watts)	Wavenumber	Color #	X Half Width	Y Half Widt	h Source l 🔺
1	Source Ellipse	0.000	0.000	0.000	0.000	-			40.000	0	0	125.000	125.000	
2	Cylinder Pipe	0.000	0.000	0.000	0.000	MIRROR			264.150					
3	Cylinder Pipe	171.700	0.000	0.000	0.000	MIRROR		00	264.150					
4	Cylinder Pipe	400.000	0.000	0.000	0.000	MIRROF	:00	200.000	264.150					
5	Cylinder Pipe	400.000	0.000	0.000	0.000			200.000	125.000					
6	Cylinder Pipe	400.000	0.000	0.000	0.000			200.000	125.000					
7	Annulus	600.000	0.000	0.000	0.000		264.1		125.000	125.000				
	ector Rectangle	-1.000	0.000	0.000		ark'	300.0		1000	1000	0	0	(
9 Dete	ector Rectangle	700.000	0.000	0.000	0		300.0	300.000	1000	1000	0	0	(
<														• •
							0 9	18 27 Incider	36 45 54 nt Angle In Degre	63 72 81 hes	50	_		
									Reflection vs. Angle					
Simulated scatter					2012 Coat				012/10/02 Dating KGR BAF0	/10/02 ing KGR_BAF0 on Object 3 Face 0				
Simulated Statter										dent media: Air (1.0) trate : MIRROR				
-		1						W	avelength: 1.064	10		wide_baffle_20120817 Configuration 1	v31.zmx 1 of 1	
🥝 2: NSC Shad	ded Model				🥝 1: Detector View	er 1			4: Detector	Viewer 2)
Update Settings Print Window Text Zoom Spin					Update Settings Print Window Text Zoom				Update Setti	Update Settings Print Window Text Zoom				
								1E-4						
								12-4		3.44	New Second		1E-1	
Beam				1E-5 1E-6					1E-2 1E-3					
							1E-7							
DCa								12-7					1E-4	
			S w					1E-8					1E-5	
						and the second second	1E-9					1E-6		
						1. S. 2. 1	1E-10		Contraction of the second		289 N	1E-7		
						Contraction and the	a state						12-7	
						A State of the second second		1E-11					1E-8	
								1E-12			S. Anna Martin		1E-9	
			S Wer					1E-13					1E-10	
									A STATE OF STATE					
				1E-14					1E-11					
					Detector Image: Incoherent Irradiance					Detector Image: Incoherent Irradiance				
					201:				2012/10/02	2012/10/02				
					Backscatter: ~6ppm _				Detector 9, NS Size 600.000 V	2012/10/02 Detector 9, NSCG Surface 1: Size 600.000 W X 600.000 H Millimeters, Pixels 1000 W X 1000 H, Total Hits = 354973 Peak Irradiance : 3.5569-002 Watts/cm ² Total Power : 2.5569-002 Watts/cm ²				
						יעפרמון	.51. (20	<u>- יווקקט</u>	Total Power	: 2.5321E+000 Watts	3			

The 3rd Japan-Korea Workshop (December 21-22, 2012, Sogang University, Seoul)

10000

CALIFY FIRST ACTIVITY OF A PROPERTY OF A PROPE

KAGRA

Surface Coating

Under investigation

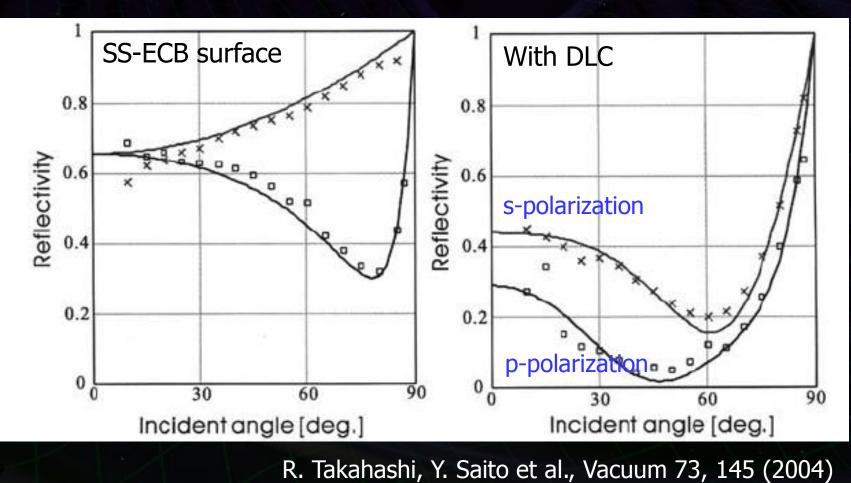
Candidate : Diamond-like Carbone (DLC)
Heritages in TAMA300

Vacuum and cryogenic compatibilities
Small scatter (peculiar reflection)

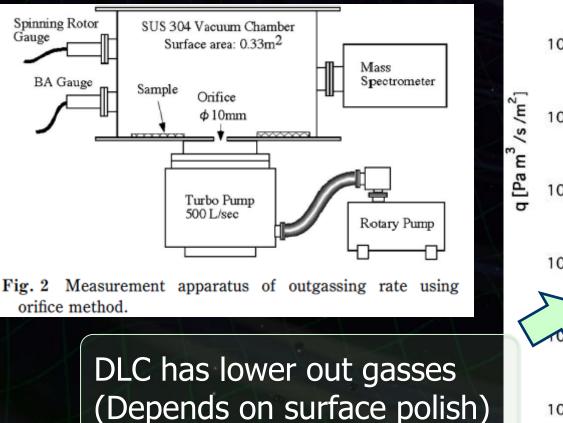
Difficulties : Rather high reflectivity (~40%)

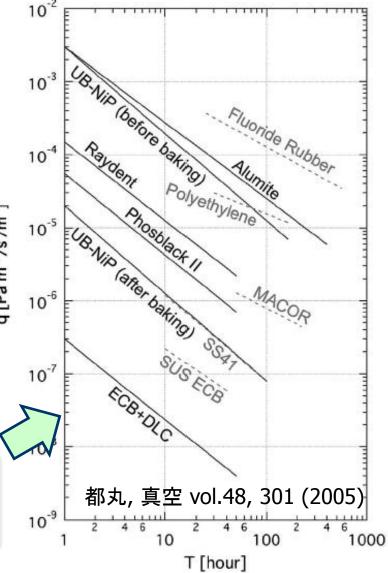
Large-area coating

Other candidates : black platings

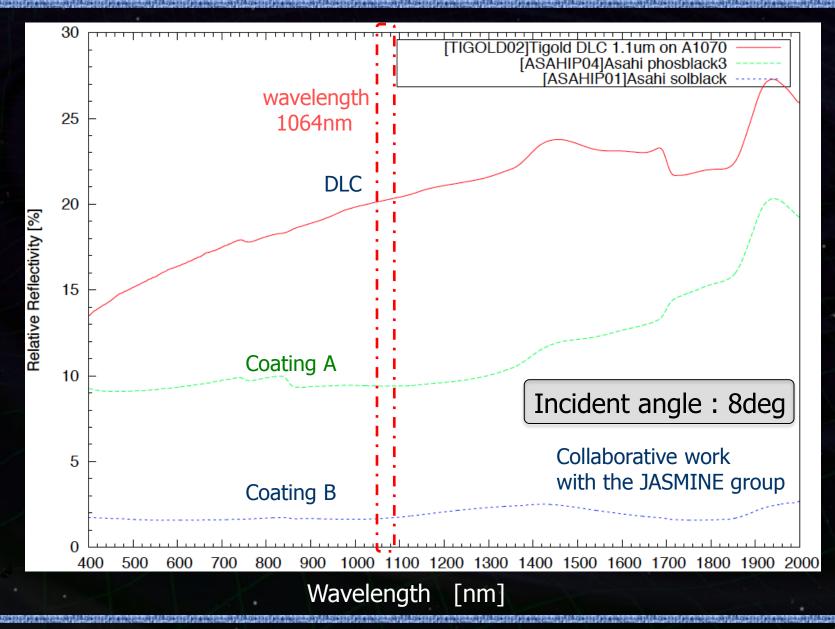

Low reflectivity (~a few % @1064nm)
Large-area coating

Diamond-like Carbon (DLC)


Results of surface reflectivity measurements



Vacuum Compatibility


Results of out-gassing measurement

Other Coating Candidates

Current Activities

Mechanical design and prototype tests

- FEM modeling for distortion
- Construction procedure

Optical design

- Ray-tracing simulation

Systematic survey measurements for surface properties of various coatings and their vacuum compatibilities.

