The LSC Algorithm Library (LAL)
EHREDLE 21—

(Review of LIGO Scientific
Collaboration Algorithm Library
Specification and Style Guide)

Documents

e LIGO-TO4XXXX-A (2005/12/17)

https://www.lsc-group.phys.uwm.edu/daswg/
projects/lal/lalspec.pdf

* LIGO-T990030-v2 (2010/03/25)

https://dcc.ligo.org/public/0010/T990030/002/
T990030-v2.pdf

* LAL Software Documentation (Isd-4.0)
http://www.Isc-group.phys.uwm.edu/lal/lsd.pdf

INTRODUCTION

12/10/25 KAGRA T —AR R T1E¥(I—T 42T

Purpose and Goal of the LAL software specification

 The LSC Algorithm Library (LAL) is a library of routines
for use in gravitational wave data analysis.

— The defining purpose of this document (LIGO-T990030-v2)
is to establish a software specification that fosters
widespread-use and collaborative-development of a well-

tested analysis library.
— The goal is to develop a portable and convenient library,
both for users and developers.
* To achieve portability, the library is a library of routines written in

a subset of C99 and the routines can easily be used by programs
written in other languages (C++, Fortran, Python, etc.).

— The rules in this specification may need to be periodically
reexamined. Therefore, this is a living document. Librarian
will amend this document as needed. Significant changes to
the document will be made in consultation with the LSC

Software Change Control Board.

Elements of the library specification

* Coding style :

— In order to establish a library and to maintain a
uniform look-and-feel.

* Function requirements :

— In order to maintain portability and to establish a
standard Application Programming Interface (API).

e Standard data structures, macros, and functions :

— In order to assist in providing a common set of tools
for developers to promote and collaborative
development.

12/10/25 KAGRA T —ARET1E(I—T 129 5

LAL and XLAL interfaces

* LAL functions tended to be large and
monolithic, and often a particular “routine”
was re-written many times in-line in many
different functions.

* |nstead, this specification introduces a second,
parallel interface, called the XLAL interface,
specifically for writing small, light-weight,
helper routines.

CODING STYLE GUIDELINES

12/10/25 KAGRA T —AR R T1E¥(I—T 42T

Coding style guidelines

Atomic data types
— LAL routines should use the LAL-specific atomic data types .
Names of functions, variables, etc.

— These rules are to define a standard namespace scheme. They apply to all
functions with external linkage as well as types, macros, etc., in header files.

Header and source file conventions
— The LAL APl is defined by the installed header files.

Language requirements

— LAL code should all be in “clean C,” i.e., that language that is a subset of
both C and C++.

— Only C-style comments should be used and avoid any constructs that would
behave differently with C++-style comments.

— Names of variables, functions, etc., should not be any of the reserved
keywords or names for the library.

Filename conventions
— LAL has a rigid directory structure.

12/10/25 KAGRA T —ARET1E(I—T 129 8

Atomic data types

* LAL routines should use the LAL-specific atomic
data types :

Type Bits Range Usual C/C++ type
CHAR 3 "\0’ to " \255" char

UCHAR 8 "\0’ to " \255" unsigned char
INT2 16 —2= 020 —1 short

INT4 32 —27 310231 — 1 int or long

INT8 64 —2703 10203 — 1 long long
UINT2 16 O0to 216 —1 unsigned short
UINT4 32 0to23% —1 unsigned int or long
UINT8 64 0to 204 —1 unsigned long long
REAL4 32 —3.4x10%®t03.4 x 10%° float

REALS 64 —1.8x103% t0 1.8 x 103%® double

12/10/25 KAGRA T —ARET1E(I—T 129

Names of functions, variables, etc. (1)

* These rules are to define a standard namespace
scheme. They apply to all functions as well as types,
macros, etc., in header files.

. All function names use StudlyCaps and begin with either LAL or XLAL, €.g., LALExampleFunction, LALDoICare,

etc. Underscores are not used. (A)L —R AKX : ZILI7RYNCHEESEDIL—E2 R T BE.

o , SHEPERFOLEEDXFEAXFTRALI 4FE)
2. All types also use StudlyCaps and begin with a capital letter, e.g., LALMyType. Custom data structures must be

given names that try to avoid namespace conflicts; we suggest simply prefixing the name with LAL or XLAL or
with the name of one of the LAL atomic data types, e.g., REALA.

. Global variables of which there are NONE (except those specifically allowed by the Librarian), and fields
within a structure or a union, are in studlyCaps beginning with a lower case letter. Global variables will begin
with either 1al or x1al, e.g., lalDebugLevel.

Macros are generally all in UPPERCASE and compound macro names may use underscores. As with the types,
to avoid namespace collisions, it is recommended that the macro begin with LAL_ or XLAL_.

. Local variables can have any name that does not shadow a standard global symbol name (whether in LAL or in
a standard C library or other likely names). Thus, do not call a variable exit or LALMalloc or even pow. And
don’t declare the variable 1 at the top level of a function and then shadow it in a block within that function. This
s just good programming practice.

Names of functions, variables, etc. (2)

New data types will be declared as shown in this example for the data type LALMyType:

typedef struct
taglLALMyType
{
INT4 firstField;
REAL4 secondField;

}
LALMyType;

Note that the structure name 1S tagLALMyType.

12/10/25 KAGRA T —AR R T1E¥(I—T 42T 11

Header and source file conventions
* The LAL APl is defined by the installed header files.

— All functions and variables with external linkage as well
as any datatypes, enumeration constants, macros, etc.,
that form part of the APl must be defined in these
installed header files.

— These installed header files will be installed in the
location where header files normally reside on a system
in a subdirectory called lal.

— It is important that all source files (header files and the C

source files) contain the Revision Control System (RCS) ID
information.

#include <1lal/LALRCSID.h> /% if no other LAL header has been included =/
NRCSID(LALTHISHEADERH, "SId: lalspec.tex,v 1.12 2005/05/03 02:37:30 patrick Exp $");

Filename conventions

* LAL has arigid directory structure :

— LAL is composed of directories called packages
whose names consist of entirely lower-case letters
with no underscores.

packagename doc
include o
Source files within these
directories will be named
SrC with StudlyCaps.
test

12/10/25 KAGRA T —AR R T1E¥(I—T 42T 13

COMMON RULES
FOR BOTH THE LAL AND THE XLAL FUNCTIONS

Common rules for both the LAL and
the XLAL functions (1)

* Function arguments :

All arguments to functions must be of one of the following types: CHAR, UCHAR, INT2, UINT2, INT4,
UINT4, INT8, UINTS, int, REAL4, REALS, or a pointer to any object. XLAL functions may also have
no arguments (void), or a variable number of arguments of the above types (. . .).

* Functions should not have any dependence on

system environment :

Functions will not perform any file I/O or have any dependence on the system environment. Specifically
the latter means that functions such as system, getenv, rand, srand will not be used.

* Memory management :

All memory allocation shall be done with the functions LAIMalloc, LALCalloc, or LALRealloc, and
shall be freed with the functions LALFree or LALRealloc; the functions malloc, calloc, realloc,
and free shall not be used.

12/10/25 KAGRA T —AR R T1E¥(I—T 42T

19

Common rules for both the LAL and
the XLAL functions (2)

 Functions must be reentrant and thread-safe :

All functions will be reentrant and thread-safe. All local variables must be automatic. No global vari-
ables will be used. Routines such as asctime, ctime, gmtime, localtime, strerror, and strtok
shall not be used as they are not reentrant and threadsafe.

* Functions should always return control to the
calling program :

All functions will return control to the calling function. Functions such as exit, atexit, raise,
assert, abort shall not be used. Long-jumps shall not be used.

12/10/25 KAGRA T —AR R T1E¥(I—T 42T 16

RULES FOR LAL FUNCTIONS

Rules for LAL functions (1)

e All LAL functions shall have names that begin with
LAL and use StudlyCaps.

e All LAL functions must return void.

* All LAL functions have as their first argument a
pointer to a LALStatus structure type :

All LAL functions shall have a pointer to a LALStatus structure as their first argument. The contents
of the LALStatus structure will be populated appropriately to indicate success or failure of the function
call. The LaALStatus structure is a linked list. If a LAL function (the sub-function) that is called from
within a LAL function fails (the top-function), the status structure returned by the sub-function shall be
the next element in the linked list of status structures returned by the top-function.

— See the LAL Software Documentation for a complete description of these
conventions.

void LALREAL4Divide (LALStatus #*status, REAL4 xresult, REAL4 numerator,
REAL4 denominator)

12/10/25 KAGRA T —AR R T1E¥(I—T 42T 18

Rules for LAL functions (2)

* The source code for a simple LAL function such as
LALREAL4Divide (in file LALDivide.c) might be:

#include <lal/LALDivide.h>
NRCSID (LALDIVIDEC, "$Id: lalspec.tex,v 1.12 2005/05/03 02:37:30 patrick Exp $");

void

LALREAL4Divide (
LALStatus =*status,
REAL4 *result,

REAL4 numerator,
REAL4 denominator
)

INITSTATUS (status, "LALREAL4Divide", LALDIVIDEC);

ASSERT (result != NULL, status, LALDIVIDEH_ ENULL, LALDIVIDEH MSGENULL);
if (denominator == 0.0)

ABORT (status, LALDIVIDEH_EDIV0O, LALDIVIDEH MSGEDIVO);
*result = numerator / denominator;

RETURN (status);

12/10/25 KAGRA T —AR R T1E¥(I—T 42T 19

RULES FOR XLAL FUNCTIONS

Rules for XLAL functions (1)

* The goal is to have XLAL functions :

— Be as flexible as possible in their interface while still
requiring strict rules on error reporting.

— Be intended to be “lightweight” functions that can be
used internally within the LAL library.

— Do not have some of the burdens of LAL functions.

— Do not have a status structure.
1. XLAL functions cannot call LAL functions.
2. XLAL functions can be “lightweight.”
3. XLAL functions must report success or failure in other

Ways. (This puts some more burden on the developers to (i) make sure that the XLAL function

correctly reports errors and (ii) understand how particular XLAL functions report their errors and
deal with these appropriately)

Rules for XLAL functions (2)

XLAL functions shall not call LAL functions.

All XLAL functions shall have a name beginning with xL.AL followed by an uppercase letter.

Four kinds of XLAL functions :

The return type of XLLAL functions shall be one of: int, CHAR, INT2, INT4, or INTS8 (integer-type return
XL AL functions); REAL4 or REALS8 (floating-point-type return XL AL functions); a pointer (pointer-type
return XL AL functions); or no return type (type void return XL AL functions).

Code Value Meaning

Return codes (for XLAL functions that return int)
XLAL_SUCCESS 0 Success
XLAL_FAILURE —1 Failure

Error numbers

Standard error numbers

XLAL_EIO 5 1/O error
XLAL_ENOMEM 12 Memory allocation error
XLAL_EFAULT 14 Invalid pointer
XLAL_EINVAL 22 Invalid argument
XLAL_EDOM 33 Input domain error
XLAL_ERANGE 34 Output range error

Extended error numbers begin at 128

Common error numbers for XLAL functions

XLAL_EFAILED 128 Generic failure

XLAL_EBADLEN 129 Inconsistent or invalid vector length
Specific mathematical and numerical error numbers begin at 256
IEEE floating point error numbers

XLAL_EFPINVAL 256 Invalid floating point operation
XLAL_EFPDIVO 257 Division by zero floating point error
XLAL_EFPOVRFLW 258 Floating point overflow error
XLAL_EFPUNDFLW 259 Floating point underflow error
XLAL_EFPINEXCT 260 Floating point inexact error
Numerical algorithm error numbers

XLAL_EMAXITER 261 Exceeded maximum number of iterations
XLAL_EDIVERGE 262 Series is diverging

XLAL_ESING 263 Apparent singularity detected
XLAL_ETOL 264 Failed to reach specified tolerance
XLAL_ELOSS 265 Loss of accuracy

Failure from within a function call: “or” error number with this
XLAL_EFUNC 1024 Internal function call failed

12/10/25 KAGRA T —AMEMIFES—7T407

22

OTHER LIBRARIES (REQUIRED FOR LAL)

Other libraries required for LAL

 LAL is not a stand-alone library:

— Two other libraries are required to build and use LAL

» “Fastest Fourier Transform in the West (version 3)” FFTW3 library

— The FFTW3 library is integrated by wrapping certain FFTW3 routines
within LAL functions.

— Other LAL functions should then use these wrapping functions rather
than make direct calls to the FFTW3 API.

 “GNU Scientific Library” GSL library.

— The GSL library provides many more functions than FFTW3. Some of
these functions, e.g., those involving file I/O, are not suitable for use
within LAL.

— However, the vast majority of the functions in GSL are useful.

— To facilitate their use within LAL, the macros CALLGSL(statement,
status) and TRYGSL(statement, status) are provided.

Data format

* There are currently two official exchange data
formats within the LSC:

— XML-based “LIGO Lightweight” LIGOIw format

— binary “Interferometric Gravitational Wave
Detector Data Frame Format” or “Frame” format.

— Libraries with routines that are specialized for I/O
with these two formats are also available.

LALSupport, LALMetalo, LALFrame

* LALSupport library :

— Basic file I/O routines

 LALMetalo library :

— |/O routines that are used to read/write the LIGO
lightweight data format. These routines use the
METAIO library routines as their engine.

* LALFrame library :

— |/O routines that are used to read/write the Frame
data format. These routines use the FRAME library
routines as their engine

