
The	
  LSC	
  Algorithm	
  Library	
  (LAL)	
  	
  
仕様書のレビュー	
  	
  

	
  
（Review	
  of	
  LIGO	
  Scien>fic	
  

Collabora>on	
  Algorithm	
  Library	
  
Specifica>on	
  and	
  Style	
  Guide）	
  

	

Hirotaka	
  Takahashi	
  

Yamanashi	
  Eiwa	
  College	


12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 1	




Documents	

•  LIGO-­‐T04XXXX-­‐A	
  (2005/12/17)	
  
hSps://www.lsc-­‐group.phys.uwm.edu/daswg/
projects/lal/lalspec.pdf	
  

•  LIGO-­‐T990030-­‐v2	
  (2010/03/25)	
  
hSps://dcc.ligo.org/public/0010/T990030/002/
T990030-­‐v2.pdf	
  
	
  
•  LAL	
  SoYware	
  Documenta>on	
  (lsd-­‐4.0)	
  
hSp://www.lsc-­‐group.phys.uwm.edu/lal/lsd.pdf	


12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 2	




12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 3	


INTRODUCTION	




Purpose	
  and	
  Goal	
  of	
  the	
  LAL	
  soYware	
  specifica>on	
  	

•  The	
  LSC	
  Algorithm	
  Library	
  (LAL)	
  is	
  a	
  library	
  of	
  rou>nes	
  
for	
  use	
  in	
  gravita>onal	
  wave	
  data	
  analysis.	
  
–  The	
  defining	
  purpose	
  of	
  this	
  document	
  (LIGO-­‐T990030-­‐v2	
  )	
  
is	
  to	
  establish	
  a	
  soYware	
  specifica>on	
  that	
  fosters	
  
widespread-­‐use	
  and	
  collabora>ve-­‐development	
  of	
  a	
  well-­‐
tested	
  analysis	
  library.	
  	
  

–  	
  The	
  goal	
  is	
  to	
  develop	
  a	
  portable	
  and	
  convenient	
  library,	
  
both	
  for	
  users	
  and	
  developers.	
  	
  
•  To	
  achieve	
  portability,	
  the	
  library	
  is	
  a	
  library	
  of	
  rou>nes	
  wriSen	
  in	
  
a	
  subset	
  of	
  C99	
  and	
  the	
  rou>nes	
  can	
  easily	
  be	
  used	
  by	
  programs	
  
wriSen	
  in	
  other	
  languages	
  (C++,	
  Fortran,	
  Python,	
  etc.).	
  

	
  	
  
–  The	
  rules	
  in	
  this	
  specifica>on	
  may	
  need	
  to	
  be	
  periodically	
  
reexamined.	
  Therefore,	
  this	
  is	
  a	
  living	
  document.	
  Librarian	
  
will	
  amend	
  this	
  document	
  as	
  needed.	
  Significant	
  changes	
  to	
  
the	
  document	
  will	
  be	
  made	
  in	
  consulta>on	
  with	
  the	
  LSC	
  
SoYware	
  Change	
  Control	
  Board.	
  	
  

12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 4	




Elements	
  of	
  the	
  library	
  specifica>on	
  	

•  Coding	
  style	
  :	
  
–  In	
  order	
  to	
  establish	
  a	
  library	
  and	
  to	
  maintain	
  a	
  
uniform	
  look-­‐and-­‐feel.	
  	
  

•  Func>on	
  requirements	
  :	
  
–  In	
  order	
  to	
  maintain	
  portability	
  and	
  to	
  establish	
  a	
  
standard	
  Applica>on	
  Programming	
  Interface	
  (API).	
  	
  

•  Standard	
  data	
  structures,	
  macros,	
  and	
  func>ons	
  :	
  
–  In	
  order	
  to	
  assist	
  in	
  providing	
  a	
  common	
  set	
  of	
  tools	
  
for	
  developers	
  to	
  promote	
  and	
  collabora>ve	
  
development.	
  	
  

12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 5	




LAL	
  and	
  XLAL	
  interfaces	
  	


•  LAL	
  func>ons	
  tended	
  to	
  be	
  large	
  and	
  
monolithic,	
  and	
  oYen	
  a	
  par>cular	
  “rou>ne”	
  
was	
  re-­‐wriSen	
  many	
  >mes	
  in-­‐line	
  in	
  many	
  
different	
  func>ons.	
  	
  

	
  
•  Instead,	
  this	
  specifica>on	
  introduces	
  a	
  second,	
  
parallel	
  interface,	
  called	
  the	
  XLAL	
  interface,	
  
specifically	
  for	
  wri>ng	
  small,	
  light-­‐weight,	
  
helper	
  rou>nes.	
  	
  

12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 6	




12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 7	


CODING	
  STYLE	
  GUIDELINES	




Coding	
  style	
  guidelines	

•  Atomic	
  data	
  types	
  	
  

–  LAL	
  rou>nes	
  should	
  use	
  the	
  LAL-­‐specific	
  atomic	
  data	
  types	
  .	
  
•  Names	
  of	
  func>ons,	
  variables,	
  etc.	
  	
  

–  These	
  rules	
  are	
  to	
  define	
  a	
  standard	
  namespace	
  scheme.	
  They	
  apply	
  to	
  all	
  
func>ons	
  with	
  external	
  linkage	
  as	
  well	
  as	
  types,	
  macros,	
  etc.,	
  in	
  header	
  files.	
  	
  

•  Header	
  and	
  source	
  file	
  conven>ons	
  	
  
–  The	
  LAL	
  API	
  is	
  defined	
  by	
  the	
  installed	
  header	
  files.	
  	
  

•  Language	
  requirements	
  	
  
–  LAL	
  code	
  should	
  all	
  be	
  in	
  “clean	
  C,”	
  i.e.,	
  that	
  language	
  that	
  is	
  a	
  subset	
  of	
  

both	
  C	
  and	
  C++.	
  	
  
–  Only	
  C-­‐style	
  comments	
  should	
  be	
  used	
  and	
  avoid	
  any	
  constructs	
  that	
  would	
  

behave	
  differently	
  with	
  C++-­‐style	
  comments.	
  	
  
–  Names	
  of	
  variables,	
  func>ons,	
  etc.,	
  should	
  not	
  be	
  any	
  of	
  the	
  reserved	
  

keywords	
  or	
  names	
  for	
  the	
  library.	
  	
  
•  Filename	
  conven>ons	
  	
  

–  LAL	
  has	
  a	
  rigid	
  directory	
  structure.	
  	
  	
  

12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 8	




Atomic	
  data	
  types	
  	

•  LAL	
  rou>nes	
  should	
  use	
  the	
  LAL-­‐specific	
  atomic	
  
data	
  types	
  :	
  
	


12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 9	


LIGO-T04XXXX

a non-LAL module can ensure that it is using the same arithmetic standard as LAL, without being burdened by LAL’s
more specialized structures.

Primitive datatypes are those that conceptually store a single number or quantity. They include both the atomic
datatypes and the complex datatypes.

Atomic Datatypes

Atomic LAL datatypes are platform-independent datatypes corresponding to the basic types in the C/C++ language.
However, since the C/C++ types are not necessarily the same across platforms, the actual mapping between LAL and
C/C++ datatypes may be different on different platforms. The following table lists the LAL atomic datatypes, their
size and range, and the C/C++ datatype to which they usually correspond.

Type Bits Range Usual C/C++ type
CHAR 8 ’\0’ to ’\255’ char
UCHAR 8 ’\0’ to ’\255’ unsigned char
INT2 16 �2

�15 to 2

15 � 1 short
INT4 32 �2

�31 to 2

31 � 1 int or long
INT8 64 �2

�63 to 2

63 � 1 long long
UINT2 16 0 to 2

16 � 1 unsigned short
UINT4 32 0 to 2

32 � 1 unsigned int or long
UINT8 64 0 to 2

64 � 1 unsigned long long
REAL4 32 �3.4⇥ 10

38 to 3.4⇥ 10

38 float
REAL8 64 �1.8⇥ 10

308 to 1.8⇥ 10

308 double

The unsigned character and integer datatypes store their values according to the usual binary system. For signed
characters and integers, setting the most-significant bit indicates that the number formed from the remaining bits
should be added to the lower value of the range. The REAL4 and REAL8 datatypes should store values according to
the IEEE Standard 754 for Binary Floating-Point Arithmetic, which gives them the following precisions and dynamic
ranges:

REAL4 REAL8
Minimum positive subnormal 1.4⇥ 10

�45
4.9⇥ 10

�324

Minimum positive normal 1.2⇥ 10

�38
2.2⇥ 10

�308

Maximum finite normal 3.4⇥ 10

38
1.8⇥ 10

308

Minimum fractional difference 6.0⇥ 10

�8
1.1⇥ 10

�16

Significant decimal digits 6–9 15–17

The minimum positive subnormal is the smallest positive representable number. The minimum positive normal is
the smallest positive number that can be represented with full precision; that is, one whose mantissa lies in the range
[0.5,1). The maximum finite normal is the largest representable number other than the reserved code for +1. The
minimum fractional difference is the smallest fractional difference between consecutive representable numbers, or half
the difference between 1 and the next representable number. Significant decimal digits gives the number of decimal
digits used to represent the binary number in decimal notation: the first is the maximum number of digits that are
guaranteed not to change upon conversion to binary, the second is the number of digits required to represent a unique
binary quantity.

Complex datatypes

LAL represents complex numbers as structures with two floating-point fields, storing the real and imaginary parts.
These are considered primitive datatypes (rather than aggregate or structured datatypes) because they conceptually
represent a single number. Furthermore, atomic and complex datatypes are treated equivalently by LAL aggregate and
structured datatypes.

COMPLEX8: This structure stores a single-precision complex number in 8 bytes of memory. The fields are:

– REAL4 re The real part.

– REAL4 im The imaginary part.

page 16 of 23



Names	
  of	
  func>ons,	
  variables,	
  etc.	
  (1)	

•  These	
  rules	
  are	
  to	
  define	
  a	
  standard	
  namespace	
  
scheme.	
  They	
  apply	
  to	
  all	
  func>ons	
  as	
  well	
  as	
  types,	
  
macros,	
  etc.,	
  in	
  header	
  files.	
  

12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 10	


LIGO-T04XXXX

2 Coding style guidelines
2.1 Atomic data types
For historical reasons more than anything I can think of, LAL routines should use the LAL-specific atomic data types
(REAL4 rather than float, REAL8 rather than double, CHAR rather than char, UCHAR rather than unsigned char)
and should use INT2, UINT2, INT4, UINT4, INT8, and UINT8, which have a platform-independent size, rather than
short int, unsigned short int, int, unsigned int, long int, and unsigned long int (and especially
not long long or long double) which do not. LAL makes certain requirements on these types. For example,
REAL4 and REAL8 must be single and double precision IEEE-754 floating-point variables. Invariably they are equiv-
alent to float or double on a given system (or else LAL won’t work at all on that system). Similarly, a INT4 is a
four-byte integer (and it is assumed that each byte is eight bits on any system that LAL is installed), so it will be valid
over the expected range.

Sometimes when the size of an integer variable is not crucial (e.g., for return codes from XLAL functions), int is
used. It is also necessary to allow the int type in LAL for functions such as frexp. Standard C functions that have
arguments that are pointers to type double, e.g., modf, can receive a pointer to type REAL8 instead. That is, the type
REAL8 can be assumed to be equivalent to the type double.

2.2 Names of functions, variables, etc.
These rules are to define a standard namespace scheme. They apply to all functions with external linkage (i.e., those
functions not preceded by the static keyword), as well as types, macros, etc., in header files.

1. All function names use StudlyCaps and begin with either LAL or XLAL, e.g., LALExampleFunction, LALDoICare,
etc. Underscores are not used.

2. All types also use StudlyCaps and begin with a capital letter, e.g., LALMyType. Custom data structures must be
given names that try to avoid namespace conflicts; we suggest simply prefixing the name with LAL or XLAL or
with the name of one of the LAL atomic data types, e.g., REAL4.

3. Global variables of which there are NONE (except those specifically allowed by the Librarian), and fields
within a structure or a union, are in studlyCaps beginning with a lower case letter. Global variables will begin
with either lal or xlal, e.g., lalDebugLevel.

4. Macros are generally all in UPPERCASE and compound macro names may use underscores. As with the types,
to avoid namespace collisions, it is recommended that the macro begin with LAL_ or XLAL_.

5. Local variables can have any name that does not shadow a standard global symbol name (whether in LAL or in
a standard C library or other likely names). Thus, do not call a variable exit or LALMalloc or even pow. And
don’t declare the variable i at the top level of a function and then shadow it in a block within that function. This
is just good programming practice.

New data types will be declared as shown in this example for the data type LALMyType:

typedef struct
tagLALMyType
{

INT4 firstField;
REAL4 secondField;

}
LALMyType;

Note that the structure name is tagLALMyType.

2.3 Header and source file conventions
The LAL API is defined by the installed header files (there may be additional header files that are used when compiling
LAL that are not installed, but these then do not form part of the API as they are not made available to the user). All
functions and variables with external linkage as well as any datatypes, enumeration constants, macros, etc., that form
part of the API must be defined in these installed header files. These installed header files will be installed in the
location where header files normally reside on a system in a subdirectory called lal. All header files should include
other LAL header files as follows: suppose that LALThisHeader.h needs to include LALAnotherHeader.h, then it
should do so as follows:

page 4 of 23

（キャメルケース方式	
  :	
  アルファベットで複合語やフレーズを表記する際、	
  
　　　　　　　　　　　　　　　　　各単語や要素語の先頭の文字を大文字で表記する手法）	




12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 11	


LIGO-T04XXXX

2 Coding style guidelines
2.1 Atomic data types
For historical reasons more than anything I can think of, LAL routines should use the LAL-specific atomic data types
(REAL4 rather than float, REAL8 rather than double, CHAR rather than char, UCHAR rather than unsigned char)
and should use INT2, UINT2, INT4, UINT4, INT8, and UINT8, which have a platform-independent size, rather than
short int, unsigned short int, int, unsigned int, long int, and unsigned long int (and especially
not long long or long double) which do not. LAL makes certain requirements on these types. For example,
REAL4 and REAL8 must be single and double precision IEEE-754 floating-point variables. Invariably they are equiv-
alent to float or double on a given system (or else LAL won’t work at all on that system). Similarly, a INT4 is a
four-byte integer (and it is assumed that each byte is eight bits on any system that LAL is installed), so it will be valid
over the expected range.

Sometimes when the size of an integer variable is not crucial (e.g., for return codes from XLAL functions), int is
used. It is also necessary to allow the int type in LAL for functions such as frexp. Standard C functions that have
arguments that are pointers to type double, e.g., modf, can receive a pointer to type REAL8 instead. That is, the type
REAL8 can be assumed to be equivalent to the type double.

2.2 Names of functions, variables, etc.
These rules are to define a standard namespace scheme. They apply to all functions with external linkage (i.e., those
functions not preceded by the static keyword), as well as types, macros, etc., in header files.

1. All function names use StudlyCaps and begin with either LAL or XLAL, e.g., LALExampleFunction, LALDoICare,
etc. Underscores are not used.

2. All types also use StudlyCaps and begin with a capital letter, e.g., LALMyType. Custom data structures must be
given names that try to avoid namespace conflicts; we suggest simply prefixing the name with LAL or XLAL or
with the name of one of the LAL atomic data types, e.g., REAL4.

3. Global variables of which there are NONE (except those specifically allowed by the Librarian), and fields
within a structure or a union, are in studlyCaps beginning with a lower case letter. Global variables will begin
with either lal or xlal, e.g., lalDebugLevel.

4. Macros are generally all in UPPERCASE and compound macro names may use underscores. As with the types,
to avoid namespace collisions, it is recommended that the macro begin with LAL_ or XLAL_.

5. Local variables can have any name that does not shadow a standard global symbol name (whether in LAL or in
a standard C library or other likely names). Thus, do not call a variable exit or LALMalloc or even pow. And
don’t declare the variable i at the top level of a function and then shadow it in a block within that function. This
is just good programming practice.

New data types will be declared as shown in this example for the data type LALMyType:

typedef struct
tagLALMyType
{

INT4 firstField;
REAL4 secondField;

}
LALMyType;

Note that the structure name is tagLALMyType.

2.3 Header and source file conventions
The LAL API is defined by the installed header files (there may be additional header files that are used when compiling
LAL that are not installed, but these then do not form part of the API as they are not made available to the user). All
functions and variables with external linkage as well as any datatypes, enumeration constants, macros, etc., that form
part of the API must be defined in these installed header files. These installed header files will be installed in the
location where header files normally reside on a system in a subdirectory called lal. All header files should include
other LAL header files as follows: suppose that LALThisHeader.h needs to include LALAnotherHeader.h, then it
should do so as follows:

page 4 of 23

Names	
  of	
  func>ons,	
  variables,	
  etc.	
  (2)	




Header	
  and	
  source	
  file	
  conven>ons	
  	

•  The	
  LAL	
  API	
  is	
  defined	
  by	
  the	
  installed	
  header	
  files.	
  
–  	
  All	
  func>ons	
  and	
  variables	
  with	
  external	
  linkage	
  as	
  well	
  
as	
  any	
  datatypes,	
  enumera>on	
  constants,	
  macros,	
  etc.,	
  
that	
  form	
  part	
  of	
  the	
  API	
  must	
  be	
  defined	
  in	
  these	
  
installed	
  header	
  files.	
  	
  

–  These	
  installed	
  header	
  files	
  will	
  be	
  installed	
  in	
  the	
  
loca>on	
  where	
  header	
  files	
  normally	
  reside	
  on	
  a	
  system	
  
in	
  a	
  subdirectory	
  called	
  lal.	
  	
  

–  It	
  is	
  important	
  that	
  all	
  source	
  files	
  (header	
  files	
  and	
  the	
  C	
  
source	
  files)	
  contain	
  the	
  Revision	
  Control	
  System	
  (RCS)	
  ID	
  
informa>on.	
  

12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 12	


LIGO-T04XXXX

#include <lal/LALAnotherHeader.h>

All header files should be idempotent. This means they need to have include guards. To do so, the first two lines
of LALThisHeader.h should be something like:

#ifndef LALTHISHEADER_H
#define LALTHISHEADER_H

and the last line of the file should be

#endif /* LALTHISHEADER_H */

To be compatible with C++, all declarations should be wrapped as follows:

#ifdef __cplusplus
extern "C" {
#endif

hdeclarationsi

#ifdef __cplusplus
}
#endif

It is important that all source files (header files, whether installed or not, and the C source files) contain the RCS
ID information, which is then put into the LAL library so that it can be examined later. The convention for this is to
have all .h have lines similar to these (for LALThisHeader.h):

#include <lal/LALRCSID.h> /* if no other LAL header has been included */
NRCSID( LALTHISHEADERH, "$Id: lalspec.tex,v 1.12 2005/05/03 02:37:30 patrick Exp $" );

near the top. Since all LAL header files will ultimately include lal/LALRCSID.h, it only explicitly needs to be in-
cluded if no other LAL header has yet been included. Note that the string "$Id: lalspec.tex,v 1.12 2005/05/03 02:37:30 patrick Exp $"
will be expanded by CVS into some string describing the current version of the file. Similarly, a .c file such as
LALThisSourceFile.c would have the following

#include <lal/LALRCSID.h> /* if no other LAL header has been included */
NRCSID( LALTHISSOURCEFILEC, "$Id: lalspec.tex,v 1.12 2005/05/03 02:37:30 patrick Exp $" );

2.4 Language requirements
LAL code should all be in “clean C,” i.e., that language that is a subset of both C and C++. This is not quite the same
as just the C programming language. Only C-style comments should be used and avoid any constructs that would
behave differently with C++-style comments. Names of variables, functions, etc., should not be any of the reserved
keywords or names for the library. Some of the keywords and reserved names are listed here. The LAL namespace
will assist in making sure that no conflicts arise. But even local variables names must be chosen carefully (e.g., so that
they aren’t the same as a C++ keyword). A list of keywords and reserved names, along with those standard C library
functions that can be used, is found in appendix A

2.5 Filename conventions
Purely for the sanity of the Librarian, LAL has a rigid directory structure. LAL is composed of directories called
packages whose names consist of entirely lower-case letters with no underscores. Within each package are four sub-
directories called doc, include (which contains all the header files that are installed), src (which contains all the
source files other than the installed header files but including those header files that are not installed), and test.
Source files within these directories will be named with StudlyCaps (starting with a capital letter, no underscores).
Refer to the LAL Software Documentation [1].

For documentation purposes, a package contains a set of headers (the installed headers), which contain prototypes
for functions that are organized in modules of one or more functions, each module being a single .c file. Thus, all the
functions with external linkage in a .c file must be prototyped in the same header file in the same package.

page 5 of 23



Filename	
  conven>ons	
  	

•  LAL	
  has	
  a	
  rigid	
  directory	
  structure	
  :	
  
–  LAL	
  is	
  composed	
  of	
  directories	
  called	
  packages	
  

whose	
  names	
  consist	
  of	
  en>rely	
  lower-­‐case	
  leSers	
  
with	
  no	
  underscores.	
  	
  

12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 13	


packagename	
  	
  

src	


include	


test	


doc	


…
	


Source	
  files	
  within	
  these	
  	
  
directories	
  will	
  be	
  named	
  	
  
with	
  StudlyCaps.	
  	




12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 14	


COMMON	
  RULES	
  	
  
FOR	
  BOTH	
  THE	
  LAL	
  AND	
  THE	
  XLAL	
  FUNCTIONS	
  	




Common	
  rules	
  for	
  both	
  the	
  LAL	
  and	
  
the	
  XLAL	
  func>ons	
  (1)	


•  Func>on	
  arguments	
  :	
  
	
  
•  Func>ons	
  should	
  not	
  have	
  any	
  dependence	
  on	
  
system	
  environment	
  :	
  

	
  
•  Memory	
  management	
  :	
  
	
  

12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 15	


LIGO-T04XXXX

3 Common rules for both the LAL and the XLAL functions
3.1 Function arguments
Function arguments must be one of the following (atomic) types: CHAR, UCHAR, INT2, UINT2, INT4, UINT4, INT8,
UINT8, int, REAL4, REAL8. In addition, functions may take a pointer as an argument. Structures or unions (includ-
ing COMPLEX8 and COMPLEX16) must not be passed directly to a function as an argument; pass a pointer instead.
Arguments may be qualified with const if desired.

All arguments to functions must be of one of the following types: CHAR, UCHAR, INT2, UINT2, INT4,
UINT4, INT8, UINT8, int, REAL4, REAL8, or a pointer to any object. XLAL functions may also have
no arguments (void), or a variable number of arguments of the above types (...).

3.2 Functions should not have any dependence on system environment
The first part of this rule is that functions should not do any file I/O since there should be no assumptions about
the nature of the filesystem. LAL is not supposed to assume POSIX. Furthermore, there should be no assumptions
about (or dependence on) the environment under which a LAL function is called. This will allow LAL routines to be
integrated into a wide variety of programming environments: they may be used in stand-alone programs or in loadable
modules integrated into other run environments. Specifically this means that routines in stdio.h are not allowed
(except for sprintf, but there is a LAL replacement for this, LALSnprintf, which should be used instead), several
routines in stdlib.h including rand and srand (there are LAL replacements for these), system, and getenv.

Functions will not perform any file I/O or have any dependence on the system environment. Specifically
the latter means that functions such as system, getenv, rand, srand will not be used.

3.3 Memory management
Memory should always be allocated or freed with one of the LAL custom memory managers: LALMalloc, LALCalloc,
LALRealloc, and LALFree, and not with malloc, calloc, realloc, and free. The LAL memory managers have
additional memory leak checking ability that will assist in debugging if the debug level is set appropriately.

All memory allocation shall be done with the functions LALMalloc, LALCalloc, or LALRealloc, and
shall be freed with the functions LALFree or LALRealloc; the functions malloc, calloc, realloc,
and free shall not be used.

Also, routines should free all memory allocated in that routine except for the memory that is explicitly created by
that routine, even if the routine exits with a failure code. This will prevent memory leaks. LAL provides a routine
LALCheckMemoryLeaks (which should not be called from any LAL function—instead it is for users of LAL to put at
the end of main) which will make sure that all memory allocated by LALMalloc (etc.) has been freed with LALFree.

In fact, it is a good idea not to allocate any temporary memory within a routine. All temporary memory needed
for a routine should be allocated by LAL functions that are designed for that purpose. Hence there are usually three
classes of LAL functions:

• LALCreateFoo or LALInitFoo functions which create and initialize storage foo that the use will pass to...

• LALBar functions which uses the storage foo, and then the user calls...

• LALDestroyFoo or LALFinalizeFoo functions which destroys the storage in foo.

3.4 Functions must be reentrant and thread-safe
This rule essentially requires a functions behavior to depend only on its arguments. There should be no state saved in
static storage within the function. That is, never use the static keyword within a function. In addition, all variables
used by a function must be local to the function. That is, no global variables are allowed. (There are a few exceptions
to this, e.g., the reading of the global lalDebugLevel variable, but these types of exceptions are under the control of
the LAL librarian.)

Furthermore, use of routines that would cause a function to fail to be reentrant and thread-safe are not allowed. For
example, many of the time.h routines (asctime, ctime, gmtime, localtime), some of the string.h routines
(strerror and strtok), and other routines that are prohibited elsewhere for additional reasons.

page 6 of 23

LIGO-T04XXXX

3 Common rules for both the LAL and the XLAL functions
3.1 Function arguments
Function arguments must be one of the following (atomic) types: CHAR, UCHAR, INT2, UINT2, INT4, UINT4, INT8,
UINT8, int, REAL4, REAL8. In addition, functions may take a pointer as an argument. Structures or unions (includ-
ing COMPLEX8 and COMPLEX16) must not be passed directly to a function as an argument; pass a pointer instead.
Arguments may be qualified with const if desired.

All arguments to functions must be of one of the following types: CHAR, UCHAR, INT2, UINT2, INT4,
UINT4, INT8, UINT8, int, REAL4, REAL8, or a pointer to any object. XLAL functions may also have
no arguments (void), or a variable number of arguments of the above types (...).

3.2 Functions should not have any dependence on system environment
The first part of this rule is that functions should not do any file I/O since there should be no assumptions about
the nature of the filesystem. LAL is not supposed to assume POSIX. Furthermore, there should be no assumptions
about (or dependence on) the environment under which a LAL function is called. This will allow LAL routines to be
integrated into a wide variety of programming environments: they may be used in stand-alone programs or in loadable
modules integrated into other run environments. Specifically this means that routines in stdio.h are not allowed
(except for sprintf, but there is a LAL replacement for this, LALSnprintf, which should be used instead), several
routines in stdlib.h including rand and srand (there are LAL replacements for these), system, and getenv.

Functions will not perform any file I/O or have any dependence on the system environment. Specifically
the latter means that functions such as system, getenv, rand, srand will not be used.

3.3 Memory management
Memory should always be allocated or freed with one of the LAL custom memory managers: LALMalloc, LALCalloc,
LALRealloc, and LALFree, and not with malloc, calloc, realloc, and free. The LAL memory managers have
additional memory leak checking ability that will assist in debugging if the debug level is set appropriately.

All memory allocation shall be done with the functions LALMalloc, LALCalloc, or LALRealloc, and
shall be freed with the functions LALFree or LALRealloc; the functions malloc, calloc, realloc,
and free shall not be used.

Also, routines should free all memory allocated in that routine except for the memory that is explicitly created by
that routine, even if the routine exits with a failure code. This will prevent memory leaks. LAL provides a routine
LALCheckMemoryLeaks (which should not be called from any LAL function—instead it is for users of LAL to put at
the end of main) which will make sure that all memory allocated by LALMalloc (etc.) has been freed with LALFree.

In fact, it is a good idea not to allocate any temporary memory within a routine. All temporary memory needed
for a routine should be allocated by LAL functions that are designed for that purpose. Hence there are usually three
classes of LAL functions:

• LALCreateFoo or LALInitFoo functions which create and initialize storage foo that the use will pass to...

• LALBar functions which uses the storage foo, and then the user calls...

• LALDestroyFoo or LALFinalizeFoo functions which destroys the storage in foo.

3.4 Functions must be reentrant and thread-safe
This rule essentially requires a functions behavior to depend only on its arguments. There should be no state saved in
static storage within the function. That is, never use the static keyword within a function. In addition, all variables
used by a function must be local to the function. That is, no global variables are allowed. (There are a few exceptions
to this, e.g., the reading of the global lalDebugLevel variable, but these types of exceptions are under the control of
the LAL librarian.)

Furthermore, use of routines that would cause a function to fail to be reentrant and thread-safe are not allowed. For
example, many of the time.h routines (asctime, ctime, gmtime, localtime), some of the string.h routines
(strerror and strtok), and other routines that are prohibited elsewhere for additional reasons.

page 6 of 23

LIGO-T04XXXX

3 Common rules for both the LAL and the XLAL functions
3.1 Function arguments
Function arguments must be one of the following (atomic) types: CHAR, UCHAR, INT2, UINT2, INT4, UINT4, INT8,
UINT8, int, REAL4, REAL8. In addition, functions may take a pointer as an argument. Structures or unions (includ-
ing COMPLEX8 and COMPLEX16) must not be passed directly to a function as an argument; pass a pointer instead.
Arguments may be qualified with const if desired.

All arguments to functions must be of one of the following types: CHAR, UCHAR, INT2, UINT2, INT4,
UINT4, INT8, UINT8, int, REAL4, REAL8, or a pointer to any object. XLAL functions may also have
no arguments (void), or a variable number of arguments of the above types (...).

3.2 Functions should not have any dependence on system environment
The first part of this rule is that functions should not do any file I/O since there should be no assumptions about
the nature of the filesystem. LAL is not supposed to assume POSIX. Furthermore, there should be no assumptions
about (or dependence on) the environment under which a LAL function is called. This will allow LAL routines to be
integrated into a wide variety of programming environments: they may be used in stand-alone programs or in loadable
modules integrated into other run environments. Specifically this means that routines in stdio.h are not allowed
(except for sprintf, but there is a LAL replacement for this, LALSnprintf, which should be used instead), several
routines in stdlib.h including rand and srand (there are LAL replacements for these), system, and getenv.

Functions will not perform any file I/O or have any dependence on the system environment. Specifically
the latter means that functions such as system, getenv, rand, srand will not be used.

3.3 Memory management
Memory should always be allocated or freed with one of the LAL custom memory managers: LALMalloc, LALCalloc,
LALRealloc, and LALFree, and not with malloc, calloc, realloc, and free. The LAL memory managers have
additional memory leak checking ability that will assist in debugging if the debug level is set appropriately.

All memory allocation shall be done with the functions LALMalloc, LALCalloc, or LALRealloc, and
shall be freed with the functions LALFree or LALRealloc; the functions malloc, calloc, realloc,
and free shall not be used.

Also, routines should free all memory allocated in that routine except for the memory that is explicitly created by
that routine, even if the routine exits with a failure code. This will prevent memory leaks. LAL provides a routine
LALCheckMemoryLeaks (which should not be called from any LAL function—instead it is for users of LAL to put at
the end of main) which will make sure that all memory allocated by LALMalloc (etc.) has been freed with LALFree.

In fact, it is a good idea not to allocate any temporary memory within a routine. All temporary memory needed
for a routine should be allocated by LAL functions that are designed for that purpose. Hence there are usually three
classes of LAL functions:

• LALCreateFoo or LALInitFoo functions which create and initialize storage foo that the use will pass to...

• LALBar functions which uses the storage foo, and then the user calls...

• LALDestroyFoo or LALFinalizeFoo functions which destroys the storage in foo.

3.4 Functions must be reentrant and thread-safe
This rule essentially requires a functions behavior to depend only on its arguments. There should be no state saved in
static storage within the function. That is, never use the static keyword within a function. In addition, all variables
used by a function must be local to the function. That is, no global variables are allowed. (There are a few exceptions
to this, e.g., the reading of the global lalDebugLevel variable, but these types of exceptions are under the control of
the LAL librarian.)

Furthermore, use of routines that would cause a function to fail to be reentrant and thread-safe are not allowed. For
example, many of the time.h routines (asctime, ctime, gmtime, localtime), some of the string.h routines
(strerror and strtok), and other routines that are prohibited elsewhere for additional reasons.

page 6 of 23



•  Func>ons	
  must	
  be	
  reentrant	
  and	
  thread-­‐safe	
  :	
  	
  

•  Func>ons	
  should	
  always	
  return	
  control	
  to	
  the	
  
calling	
  program	
  :	
  

12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 16	


Common	
  rules	
  for	
  both	
  the	
  LAL	
  and	
  
the	
  XLAL	
  func>ons	
  (2)	


LIGO-T04XXXX

All functions will be reentrant and thread-safe. All local variables must be automatic. No global vari-
ables will be used. Routines such as asctime, ctime, gmtime, localtime, strerror, and strtok
shall not be used as they are not reentrant and threadsafe.

3.5 Functions should always return control to the calling program
That is, routines should never explicitly raise signals, abort, or call the exit function, nor should they call functions
that might do so. Also, since LAL is a library, don’t change the behavior of exit or signals. Thus the routines exit,
atexit, and routines in signal.h and assert.h should not be used. (But note the exception that XLAL functions
do call an error handler, which can be set outside of the library to abort or exit.) Also, long-jumps are not allowed, so
any routine in setjmp.h is not allowed.

All functions will return control to the calling function. Functions such as exit, atexit, raise,
assert, abort shall not be used. Long-jumps shall not be used.

4 Rules for LAL functions
All LAL functions must return void and have as their first argument a pointer to a LALStatus structure type. Any
number of arguments may follow the status structure, though it is good style to be economical and to group miscel-
laneous data into structures where useful. The general convention is to have the first argument following the status
structure to be the primary output from the function (i.e., a pointer to the result that is not used as input to the function).
This general convention is for the convenience of the user who will come to appreciate that arguments are typically
ordered in LAL as

void LALREAL4Divide( LALStatus *status, REAL4 *result, REAL4 numerator,
REAL4 denominator )

rather than the following

void LALREAL4Divide( LALStatus *status, REAL4 numerator, REAL4 denominator,
REAL4 *result )

REAL4)

All LAL functions shall have names that begin with LAL followed by an uppercase letter.

All LAL functions shall have no return value (type void return).

All LAL functions shall have a pointer to a LALStatus structure as their first argument. The contents
of the LALStatus structure will be populated appropriately to indicate success or failure of the function
call. The LALStatus structure is a linked list. If a LAL function (the sub-function) that is called from
within a LAL function fails (the top-function), the status structure returned by the sub-function shall be
the next element in the linked list of status structures returned by the top-function.

The status structure is maintained from the calling program and keeps a trace of all levels of LAL functions
being called (it is a linked list of status structures). If a failure occurs, the status structure can be used to identify
where and which sequence of functions have been called. The status structure is central to the “LAL interface.” The
status structure is not typically manipulated by hand. . . LAL provides several status handling macros for manipulating
the status structure and reporting errors. The use of these macros imposes additional conventions on writing LAL
functions. See the LAL Software Documentation [1] for a complete description of these conventions. As a brief
synopsis, this is what a the source code for a simple LAL function such as LALREAL4Divide (in file LALDivide.c)
might be:

#include <lal/LALDivide.h>
NRCSID( LALDIVIDEC, "$Id: lalspec.tex,v 1.12 2005/05/03 02:37:30 patrick Exp $" );

void
LALREAL4Divide(

LALStatus *status,
REAL4 *result,

page 7 of 23

LIGO-T04XXXX

All functions will be reentrant and thread-safe. All local variables must be automatic. No global vari-
ables will be used. Routines such as asctime, ctime, gmtime, localtime, strerror, and strtok
shall not be used as they are not reentrant and threadsafe.

3.5 Functions should always return control to the calling program
That is, routines should never explicitly raise signals, abort, or call the exit function, nor should they call functions
that might do so. Also, since LAL is a library, don’t change the behavior of exit or signals. Thus the routines exit,
atexit, and routines in signal.h and assert.h should not be used. (But note the exception that XLAL functions
do call an error handler, which can be set outside of the library to abort or exit.) Also, long-jumps are not allowed, so
any routine in setjmp.h is not allowed.

All functions will return control to the calling function. Functions such as exit, atexit, raise,
assert, abort shall not be used. Long-jumps shall not be used.

4 Rules for LAL functions
All LAL functions must return void and have as their first argument a pointer to a LALStatus structure type. Any
number of arguments may follow the status structure, though it is good style to be economical and to group miscel-
laneous data into structures where useful. The general convention is to have the first argument following the status
structure to be the primary output from the function (i.e., a pointer to the result that is not used as input to the function).
This general convention is for the convenience of the user who will come to appreciate that arguments are typically
ordered in LAL as

void LALREAL4Divide( LALStatus *status, REAL4 *result, REAL4 numerator,
REAL4 denominator )

rather than the following

void LALREAL4Divide( LALStatus *status, REAL4 numerator, REAL4 denominator,
REAL4 *result )

REAL4)

All LAL functions shall have names that begin with LAL followed by an uppercase letter.

All LAL functions shall have no return value (type void return).

All LAL functions shall have a pointer to a LALStatus structure as their first argument. The contents
of the LALStatus structure will be populated appropriately to indicate success or failure of the function
call. The LALStatus structure is a linked list. If a LAL function (the sub-function) that is called from
within a LAL function fails (the top-function), the status structure returned by the sub-function shall be
the next element in the linked list of status structures returned by the top-function.

The status structure is maintained from the calling program and keeps a trace of all levels of LAL functions
being called (it is a linked list of status structures). If a failure occurs, the status structure can be used to identify
where and which sequence of functions have been called. The status structure is central to the “LAL interface.” The
status structure is not typically manipulated by hand. . . LAL provides several status handling macros for manipulating
the status structure and reporting errors. The use of these macros imposes additional conventions on writing LAL
functions. See the LAL Software Documentation [1] for a complete description of these conventions. As a brief
synopsis, this is what a the source code for a simple LAL function such as LALREAL4Divide (in file LALDivide.c)
might be:

#include <lal/LALDivide.h>
NRCSID( LALDIVIDEC, "$Id: lalspec.tex,v 1.12 2005/05/03 02:37:30 patrick Exp $" );

void
LALREAL4Divide(

LALStatus *status,
REAL4 *result,

page 7 of 23



12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 17	


RULES	
  FOR	
  LAL	
  FUNCTIONS	
  	




Rules	
  for	
  LAL	
  func>ons	
  (1)	

•  All	
  LAL	
  func>ons	
  shall	
  have	
  names	
  that	
  begin	
  with	
  
LAL	
  and	
  use	
  StudlyCaps.	
  	
  

•  All	
  LAL	
  func>ons	
  must	
  return	
  void.	
  
•  All	
  LAL	
  func>ons	
  have	
  as	
  their	
  first	
  argument	
  a	
  
pointer	
  to	
  a	
  LALStatus	
  structure	
  type	
  :	
  

–  	
  See	
  the	
  LAL	
  SoYware	
  Documenta>on	
  for	
  a	
  complete	
  descrip>on	
  of	
  these	
  
conven>ons.	
  	


12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 18	


LIGO-T04XXXX

All functions will be reentrant and thread-safe. All local variables must be automatic. No global vari-
ables will be used. Routines such as asctime, ctime, gmtime, localtime, strerror, and strtok
shall not be used as they are not reentrant and threadsafe.

3.5 Functions should always return control to the calling program
That is, routines should never explicitly raise signals, abort, or call the exit function, nor should they call functions
that might do so. Also, since LAL is a library, don’t change the behavior of exit or signals. Thus the routines exit,
atexit, and routines in signal.h and assert.h should not be used. (But note the exception that XLAL functions
do call an error handler, which can be set outside of the library to abort or exit.) Also, long-jumps are not allowed, so
any routine in setjmp.h is not allowed.

All functions will return control to the calling function. Functions such as exit, atexit, raise,
assert, abort shall not be used. Long-jumps shall not be used.

4 Rules for LAL functions
All LAL functions must return void and have as their first argument a pointer to a LALStatus structure type. Any
number of arguments may follow the status structure, though it is good style to be economical and to group miscel-
laneous data into structures where useful. The general convention is to have the first argument following the status
structure to be the primary output from the function (i.e., a pointer to the result that is not used as input to the function).
This general convention is for the convenience of the user who will come to appreciate that arguments are typically
ordered in LAL as

void LALREAL4Divide( LALStatus *status, REAL4 *result, REAL4 numerator,
REAL4 denominator )

rather than the following

void LALREAL4Divide( LALStatus *status, REAL4 numerator, REAL4 denominator,
REAL4 *result )

REAL4)

All LAL functions shall have names that begin with LAL followed by an uppercase letter.

All LAL functions shall have no return value (type void return).

All LAL functions shall have a pointer to a LALStatus structure as their first argument. The contents
of the LALStatus structure will be populated appropriately to indicate success or failure of the function
call. The LALStatus structure is a linked list. If a LAL function (the sub-function) that is called from
within a LAL function fails (the top-function), the status structure returned by the sub-function shall be
the next element in the linked list of status structures returned by the top-function.

The status structure is maintained from the calling program and keeps a trace of all levels of LAL functions
being called (it is a linked list of status structures). If a failure occurs, the status structure can be used to identify
where and which sequence of functions have been called. The status structure is central to the “LAL interface.” The
status structure is not typically manipulated by hand. . . LAL provides several status handling macros for manipulating
the status structure and reporting errors. The use of these macros imposes additional conventions on writing LAL
functions. See the LAL Software Documentation [1] for a complete description of these conventions. As a brief
synopsis, this is what a the source code for a simple LAL function such as LALREAL4Divide (in file LALDivide.c)
might be:

#include <lal/LALDivide.h>
NRCSID( LALDIVIDEC, "$Id: lalspec.tex,v 1.12 2005/05/03 02:37:30 patrick Exp $" );

void
LALREAL4Divide(

LALStatus *status,
REAL4 *result,

page 7 of 23

LIGO-T04XXXX

All functions will be reentrant and thread-safe. All local variables must be automatic. No global vari-
ables will be used. Routines such as asctime, ctime, gmtime, localtime, strerror, and strtok
shall not be used as they are not reentrant and threadsafe.

3.5 Functions should always return control to the calling program
That is, routines should never explicitly raise signals, abort, or call the exit function, nor should they call functions
that might do so. Also, since LAL is a library, don’t change the behavior of exit or signals. Thus the routines exit,
atexit, and routines in signal.h and assert.h should not be used. (But note the exception that XLAL functions
do call an error handler, which can be set outside of the library to abort or exit.) Also, long-jumps are not allowed, so
any routine in setjmp.h is not allowed.

All functions will return control to the calling function. Functions such as exit, atexit, raise,
assert, abort shall not be used. Long-jumps shall not be used.

4 Rules for LAL functions
All LAL functions must return void and have as their first argument a pointer to a LALStatus structure type. Any
number of arguments may follow the status structure, though it is good style to be economical and to group miscel-
laneous data into structures where useful. The general convention is to have the first argument following the status
structure to be the primary output from the function (i.e., a pointer to the result that is not used as input to the function).
This general convention is for the convenience of the user who will come to appreciate that arguments are typically
ordered in LAL as

void LALREAL4Divide( LALStatus *status, REAL4 *result, REAL4 numerator,
REAL4 denominator )

rather than the following

void LALREAL4Divide( LALStatus *status, REAL4 numerator, REAL4 denominator,
REAL4 *result )

REAL4)

All LAL functions shall have names that begin with LAL followed by an uppercase letter.

All LAL functions shall have no return value (type void return).

All LAL functions shall have a pointer to a LALStatus structure as their first argument. The contents
of the LALStatus structure will be populated appropriately to indicate success or failure of the function
call. The LALStatus structure is a linked list. If a LAL function (the sub-function) that is called from
within a LAL function fails (the top-function), the status structure returned by the sub-function shall be
the next element in the linked list of status structures returned by the top-function.

The status structure is maintained from the calling program and keeps a trace of all levels of LAL functions
being called (it is a linked list of status structures). If a failure occurs, the status structure can be used to identify
where and which sequence of functions have been called. The status structure is central to the “LAL interface.” The
status structure is not typically manipulated by hand. . . LAL provides several status handling macros for manipulating
the status structure and reporting errors. The use of these macros imposes additional conventions on writing LAL
functions. See the LAL Software Documentation [1] for a complete description of these conventions. As a brief
synopsis, this is what a the source code for a simple LAL function such as LALREAL4Divide (in file LALDivide.c)
might be:

#include <lal/LALDivide.h>
NRCSID( LALDIVIDEC, "$Id: lalspec.tex,v 1.12 2005/05/03 02:37:30 patrick Exp $" );

void
LALREAL4Divide(

LALStatus *status,
REAL4 *result,

page 7 of 23



•  The	
  source	
  code	
  for	
  a	
  simple	
  LAL	
  func>on	
  such	
  as	
  
LALREAL4Divide	
  (in	
  file	
  LALDivide.c)	
  might	
  be:	
  	
  

	
  

12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 19	


Rules	
  for	
  LAL	
  func>ons	
  (2)	


LIGO-T04XXXX

All functions will be reentrant and thread-safe. All local variables must be automatic. No global vari-
ables will be used. Routines such as asctime, ctime, gmtime, localtime, strerror, and strtok
shall not be used as they are not reentrant and threadsafe.

3.5 Functions should always return control to the calling program
That is, routines should never explicitly raise signals, abort, or call the exit function, nor should they call functions
that might do so. Also, since LAL is a library, don’t change the behavior of exit or signals. Thus the routines exit,
atexit, and routines in signal.h and assert.h should not be used. (But note the exception that XLAL functions
do call an error handler, which can be set outside of the library to abort or exit.) Also, long-jumps are not allowed, so
any routine in setjmp.h is not allowed.

All functions will return control to the calling function. Functions such as exit, atexit, raise,
assert, abort shall not be used. Long-jumps shall not be used.

4 Rules for LAL functions
All LAL functions must return void and have as their first argument a pointer to a LALStatus structure type. Any
number of arguments may follow the status structure, though it is good style to be economical and to group miscel-
laneous data into structures where useful. The general convention is to have the first argument following the status
structure to be the primary output from the function (i.e., a pointer to the result that is not used as input to the function).
This general convention is for the convenience of the user who will come to appreciate that arguments are typically
ordered in LAL as

void LALREAL4Divide( LALStatus *status, REAL4 *result, REAL4 numerator,
REAL4 denominator )

rather than the following

void LALREAL4Divide( LALStatus *status, REAL4 numerator, REAL4 denominator,
REAL4 *result )

REAL4)

All LAL functions shall have names that begin with LAL followed by an uppercase letter.

All LAL functions shall have no return value (type void return).

All LAL functions shall have a pointer to a LALStatus structure as their first argument. The contents
of the LALStatus structure will be populated appropriately to indicate success or failure of the function
call. The LALStatus structure is a linked list. If a LAL function (the sub-function) that is called from
within a LAL function fails (the top-function), the status structure returned by the sub-function shall be
the next element in the linked list of status structures returned by the top-function.

The status structure is maintained from the calling program and keeps a trace of all levels of LAL functions
being called (it is a linked list of status structures). If a failure occurs, the status structure can be used to identify
where and which sequence of functions have been called. The status structure is central to the “LAL interface.” The
status structure is not typically manipulated by hand. . . LAL provides several status handling macros for manipulating
the status structure and reporting errors. The use of these macros imposes additional conventions on writing LAL
functions. See the LAL Software Documentation [1] for a complete description of these conventions. As a brief
synopsis, this is what a the source code for a simple LAL function such as LALREAL4Divide (in file LALDivide.c)
might be:

#include <lal/LALDivide.h>
NRCSID( LALDIVIDEC, "$Id: lalspec.tex,v 1.12 2005/05/03 02:37:30 patrick Exp $" );

void
LALREAL4Divide(

LALStatus *status,
REAL4 *result,

page 7 of 23

LIGO-T04XXXX

REAL4 numerator,
REAL4 denominator
)

{
INITSTATUS( status, "LALREAL4Divide", LALDIVIDEC );
ASSERT( result != NULL, status, LALDIVIDEH_ENULL, LALDIVIDEH_MSGENULL );
if ( denominator == 0.0 )
ABORT( status, LALDIVIDEH_EDIV0, LALDIVIDEH_MSGEDIV0 );

*result = numerator / denominator;
RETURN( status );

}

Here the error codes LALDIVIDEH_ENULL and LALDIVIDEH_EDIV0 and the corresponding error messages LALDIVIDEH_MSGENULL
and LALDIVIDEH_MSGEDIV0 would be defined in LALDivide.h. The INITSTATUS structure is the first line of a LAL
function. It populates the status structure with useful information such as the function name and RCS ID (which are
the macro arguments). The RETURN macro prepares the status structure to indicate a nominal completion of the func-
tion; it should be used with any successful return. Error handling in this example is accomplished using either the
ASSERT or ABORT macros. The ASSERT macros are usually used to check the sanity of arguments; the first macro
argument is the result of a test that should be true otherwise the ASSERT macro will populate the status structure with
an error code and message (specified by the third and fourth macro arguments) and will return from the function. The
ASSERT functions are useful during debugging and development of code, and they are removed when LAL is compiled
in production mode, so they can be used liberally. Thus true failures are captured instead with the ABORT macro. Like
ASSERT, ABORT populates the status structure with an error code and message and returns, but it does not get removed
when LAL is compiled in production mode. The ABORT macro is the normal way of dealing with error conditions.

There are several other status structure macros that are needed when preparing a status structure within a LAL
function for calling another LAL function, for checking the result of that function call, and for handling situations
when memory needs to be cleaned up before the function exits. The conventions for these situations are all described
in the LAL Software Documentation. Here we will just note that these macros should always be used, and that a
LAL function should never declare its own LALStatus structure for use when calling other LAL functions... the
status structure used must always be one atta(t)ched to the provided status structure (so that the function call trace is
maintained).

5 Rules for XLAL functions
The goal is to have XLAL functions be as flexible as possible in their interface while still requiring strict rules on error
reporting. The XLAL functions are intended to be “lightweight” functions that can be used internally within the LAL
library. They don’t have some of the burdens of LAL functions. In particular, they do not have a status structure. This
immediately implies to the following:

1. XLAL functions cannot call LAL functions. Since LAL functions require a status structure, and since this
status structure must initiate in the top-level program that interfaces with the LAL library (so that a trace of
function calls is returned), XLAL functions cannot call LAL functions, even by having a local status structure.
If you need to call a LAL function internally, the function must be a LAL function.

2. XLAL functions can be “lightweight.” Initializing the status structure, atta(t)ching new structures to the
list, setting the various fields of the status structure to indicate successes or failures, etc., can be somewhat
burdensome for both the programmer and for the computer. The lack of a status structure in XLAL functions will
relieve some of this burden and will hopefully allow for some of the tasks that are now done in large, monolithic
code blocks to be divided into smaller and more modular XLAL functions. Compilers can then easily optimize
code either by inlining the XLAL function or not depending on issues that the compiler understands (e.g., costs
of a function call vs. cache misses, etc.).

3. XLAL functions must report success or failure in other ways. This puts some more burden on the developers
to (i) make sure that the XLAL function correctly reports errors and (ii) understand how particular XLAL
functions report their errors and deal with these appropriately. The goal is to design some rules for the XLAL
functions that try to approach some degree of uniformity without overly hampering their interface.

For the purpose of providing a relatively uniform error reporting system, it is necessary to categorize XLAL functions
into four likely types, which are based on their return types.

All XLAL functions shall have a name beginning with XLAL followed by an uppercase letter.

page 8 of 23



12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 20	


RULES	
  FOR	
  XLAL	
  FUNCTIONS	
  	




•  The	
  goal	
  is	
  to	
  have	
  XLAL	
  func>ons	
  :	
  
– Be	
  as	
  flexible	
  as	
  possible	
  in	
  their	
  interface	
  while	
  s>ll	
  
requiring	
  strict	
  rules	
  on	
  error	
  repor>ng.	
  	
  

– Be	
  intended	
  to	
  be	
  “lightweight”	
  func>ons	
  that	
  can	
  be	
  
used	
  internally	
  within	
  the	
  LAL	
  library.	
  	
  

– Do	
  not	
  have	
  some	
  of	
  the	
  burdens	
  of	
  LAL	
  func>ons.	
  	
  
– Do	
  not	
  have	
  a	
  status	
  structure.	
  	
  

1.  XLAL	
  func>ons	
  cannot	
  call	
  LAL	
  func>ons.	
  	
  
2.  XLAL	
  func>ons	
  can	
  be	
  “lightweight.”	
  	
  
3.  XLAL	
  func>ons	
  must	
  report	
  success	
  or	
  failure	
  in	
  other	
  

ways.	
  	
  	
  	
  	
  	
  (This	
  puts	
  some	
  more	
  burden	
  on	
  the	
  developers	
  to	
  (i)	
  make	
  sure	
  that	
  the	
  XLAL	
  func>on	
  
correctly	
  reports	
  errors	
  and	
  (ii)	
  understand	
  how	
  par>cular	
  XLAL	
  func>ons	
  report	
  their	
  errors	
  and	
  
deal	
  with	
  these	
  appropriately)	
  

	
  12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 21	


Rules	
  for	
  XLAL	
  func>ons	
  (1)	




12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 22	


Rules	
  for	
  XLAL	
  func>ons	
  (2)	


LIGO-T04XXXX

REAL4 numerator,
REAL4 denominator
)

{
INITSTATUS( status, "LALREAL4Divide", LALDIVIDEC );
ASSERT( result != NULL, status, LALDIVIDEH_ENULL, LALDIVIDEH_MSGENULL );
if ( denominator == 0.0 )

ABORT( status, LALDIVIDEH_EDIV0, LALDIVIDEH_MSGEDIV0 );

*result = numerator / denominator;
RETURN( status );

}

Here the error codes LALDIVIDEH_ENULL and LALDIVIDEH_EDIV0 and the corresponding error messages LALDIVIDEH_MSGENULL
and LALDIVIDEH_MSGEDIV0 would be defined in LALDivide.h. The INITSTATUS structure is the first line of a LAL
function. It populates the status structure with useful information such as the function name and RCS ID (which are
the macro arguments). The RETURN macro prepares the status structure to indicate a nominal completion of the func-
tion; it should be used with any successful return. Error handling in this example is accomplished using either the
ASSERT or ABORT macros. The ASSERT macros are usually used to check the sanity of arguments; the first macro
argument is the result of a test that should be true otherwise the ASSERT macro will populate the status structure with
an error code and message (specified by the third and fourth macro arguments) and will return from the function. The
ASSERT functions are useful during debugging and development of code, and they are removed when LAL is compiled
in production mode, so they can be used liberally. Thus true failures are captured instead with the ABORT macro. Like
ASSERT, ABORT populates the status structure with an error code and message and returns, but it does not get removed
when LAL is compiled in production mode. The ABORT macro is the normal way of dealing with error conditions.

There are several other status structure macros that are needed when preparing a status structure within a LAL
function for calling another LAL function, for checking the result of that function call, and for handling situations
when memory needs to be cleaned up before the function exits. The conventions for these situations are all described
in the LAL Software Documentation. Here we will just note that these macros should always be used, and that a
LAL function should never declare its own LALStatus structure for use when calling other LAL functions... the
status structure used must always be one atta(t)ched to the provided status structure (so that the function call trace is
maintained).

5 Rules for XLAL functions
The goal is to have XLAL functions be as flexible as possible in their interface while still requiring strict rules on error
reporting. The XLAL functions are intended to be “lightweight” functions that can be used internally within the LAL
library. They don’t have some of the burdens of LAL functions. In particular, they do not have a status structure. This
immediately implies to the following:

1. XLAL functions cannot call LAL functions. Since LAL functions require a status structure, and since this
status structure must initiate in the top-level program that interfaces with the LAL library (so that a trace of
function calls is returned), XLAL functions cannot call LAL functions, even by having a local status structure.
If you need to call a LAL function internally, the function must be a LAL function.

2. XLAL functions can be “lightweight.” Initializing the status structure, atta(t)ching new structures to the
list, setting the various fields of the status structure to indicate successes or failures, etc., can be somewhat
burdensome for both the programmer and for the computer. The lack of a status structure in XLAL functions will
relieve some of this burden and will hopefully allow for some of the tasks that are now done in large, monolithic
code blocks to be divided into smaller and more modular XLAL functions. Compilers can then easily optimize
code either by inlining the XLAL function or not depending on issues that the compiler understands (e.g., costs
of a function call vs. cache misses, etc.).

3. XLAL functions must report success or failure in other ways. This puts some more burden on the developers
to (i) make sure that the XLAL function correctly reports errors and (ii) understand how particular XLAL
functions report their errors and deal with these appropriately. The goal is to design some rules for the XLAL
functions that try to approach some degree of uniformity without overly hampering their interface.

For the purpose of providing a relatively uniform error reporting system, it is necessary to categorize XLAL functions
into four likely types, which are based on their return types.

All XLAL functions shall have a name beginning with XLAL followed by an uppercase letter.

page 8 of 23

LIGO-T04XXXX

XLAL functions shall not call LAL functions.

The return type of XLAL functions shall be one of: int, CHAR, INT2, INT4, or INT8 (integer-type return
XLAL functions); REAL4 or REAL8 (floating-point-type return XLAL functions); a pointer (pointer-type
return XLAL functions); or no return type (type void return XLAL functions).

5.1 Four kinds of XLAL functions
XLAL functions will be one of four types based principally on their return type, though this is also largely determined
by their functional nature. The way that the XLAL functions report an error through their return value depends on
which type it is. In addition, all XLAL functions will report errors by setting an XLAL error number, xlalErrno,
and invoking the XLAL error handler (described below). For each type of function there is a macro that will perform
all of these tasks.

1. XLAL functions that return an integer. These are XLAL functions that return one of CHAR, INT2, INT4,
INT8, or int.

Simple XLAL functions will return type int that will either be 0 to indicate success or -1 to indicate failure.
However, sometimes it is useful to have an XLAL function that counts things (e.g., nodes in a linked list). For
these functions it is useful for the count to be the return value. Therefore the rule for XLAL functions in this
category is:

All XLAL functions that return an integer type shall return a negative result to indicate a failure. In
addition, the xlalErrno shall be set to the appropriate error number and the XLAL error handler
shall be invoked.

This means that there cannot be an XLAL function that returns an unsigned integer type (including size_t).

To report an error from this type of function, use the macro XLAL_ERROR( func, errnum ) where func is
the function name string and errnum is the XLAL error number (see below).

2. XLAL functions that return a floating-point number. These are XLAL functions that return either REAL4 or
REAL8.

Such functions are quite useful for providing extended mathematical functions to do things such as compute
the value of a distribution at a certain point, etc. The value returned must still be checked to see if there
was an error. To flag an error, these functions should return a particular value that would be impossible to
obtain. The value is given by the constants XLAL_REAL4_FAIL_NAN which has the same bit pattern as the 32
bit hexadecimal integer constant 0x7fc001a1, or XLAL_REAL8_FAIL_NAN which has the same bit pattern as
the 64 bit hexadecimal integer constant 0x7ff80000000001a1 respectively. These constants are known as
“quiet” (as opposed to “signaling”) NaN (not-a-number) values. However, owing to the 1a1 at the end of the
hexadecimal representation, they are not likely to occur as a result of any calculation (e.g., 0.0/0.0) as it is
unlikely that any C library will use these particular NaN values. Thus these values are identifiable as failures
arising from XLAL functions and represent impossible results.

To summarize:

All XLAL functions that return a REAL4 floating-point type shall return the REAL4 floating-point
constant XLAL_REAL4_FAIL_NAN to indicate a failure. All XLAL functions that return a REAL8
floating-point type shall return the REAL8 floating-point constant XLAL_REAL8_FAIL_NAN to in-
dicate a failure. In addition, the xlalErrno shall be set to the appropriate error number and the
XLAL error handler shall be invoked.

To report an error from these types of functions, use one of the macros XLAL_ERROR_REAL4( func, errnum )
or XLAL_ERROR_REAL8( func, errnum ) where func is the function name string and errnum is the XLAL
error number (see below). The result from a function call must be checked to see if one of these constants has
been returned. This can be done with the macros XLAL_IS_REAL4_FAIL_NAN(val) and XLAL_IS_REAL8_FAIL_NAN(val).

3. XLAL functions that return a pointer. These are often XLAL functions that are used to create structures, but
can also be functions that return a pointer to the output structure. An example of the latter, imagine the function:

page 9 of 23

LIGO-T04XXXX

XLAL functions shall not call LAL functions.

The return type of XLAL functions shall be one of: int, CHAR, INT2, INT4, or INT8 (integer-type return
XLAL functions); REAL4 or REAL8 (floating-point-type return XLAL functions); a pointer (pointer-type
return XLAL functions); or no return type (type void return XLAL functions).

5.1 Four kinds of XLAL functions
XLAL functions will be one of four types based principally on their return type, though this is also largely determined
by their functional nature. The way that the XLAL functions report an error through their return value depends on
which type it is. In addition, all XLAL functions will report errors by setting an XLAL error number, xlalErrno,
and invoking the XLAL error handler (described below). For each type of function there is a macro that will perform
all of these tasks.

1. XLAL functions that return an integer. These are XLAL functions that return one of CHAR, INT2, INT4,
INT8, or int.

Simple XLAL functions will return type int that will either be 0 to indicate success or -1 to indicate failure.
However, sometimes it is useful to have an XLAL function that counts things (e.g., nodes in a linked list). For
these functions it is useful for the count to be the return value. Therefore the rule for XLAL functions in this
category is:

All XLAL functions that return an integer type shall return a negative result to indicate a failure. In
addition, the xlalErrno shall be set to the appropriate error number and the XLAL error handler
shall be invoked.

This means that there cannot be an XLAL function that returns an unsigned integer type (including size_t).

To report an error from this type of function, use the macro XLAL_ERROR( func, errnum ) where func is
the function name string and errnum is the XLAL error number (see below).

2. XLAL functions that return a floating-point number. These are XLAL functions that return either REAL4 or
REAL8.

Such functions are quite useful for providing extended mathematical functions to do things such as compute
the value of a distribution at a certain point, etc. The value returned must still be checked to see if there
was an error. To flag an error, these functions should return a particular value that would be impossible to
obtain. The value is given by the constants XLAL_REAL4_FAIL_NAN which has the same bit pattern as the 32
bit hexadecimal integer constant 0x7fc001a1, or XLAL_REAL8_FAIL_NAN which has the same bit pattern as
the 64 bit hexadecimal integer constant 0x7ff80000000001a1 respectively. These constants are known as
“quiet” (as opposed to “signaling”) NaN (not-a-number) values. However, owing to the 1a1 at the end of the
hexadecimal representation, they are not likely to occur as a result of any calculation (e.g., 0.0/0.0) as it is
unlikely that any C library will use these particular NaN values. Thus these values are identifiable as failures
arising from XLAL functions and represent impossible results.

To summarize:

All XLAL functions that return a REAL4 floating-point type shall return the REAL4 floating-point
constant XLAL_REAL4_FAIL_NAN to indicate a failure. All XLAL functions that return a REAL8
floating-point type shall return the REAL8 floating-point constant XLAL_REAL8_FAIL_NAN to in-
dicate a failure. In addition, the xlalErrno shall be set to the appropriate error number and the
XLAL error handler shall be invoked.

To report an error from these types of functions, use one of the macros XLAL_ERROR_REAL4( func, errnum )
or XLAL_ERROR_REAL8( func, errnum ) where func is the function name string and errnum is the XLAL
error number (see below). The result from a function call must be checked to see if one of these constants has
been returned. This can be done with the macros XLAL_IS_REAL4_FAIL_NAN(val) and XLAL_IS_REAL8_FAIL_NAN(val).

3. XLAL functions that return a pointer. These are often XLAL functions that are used to create structures, but
can also be functions that return a pointer to the output structure. An example of the latter, imagine the function:

page 9 of 23

Four	
  kinds	
  of	
  XLAL	
  func>ons	
  :	
  	
  	


LIGO-T04XXXX

Code Value Meaning
Return codes (for XLAL functions that return int)

XLAL SUCCESS 0 Success
XLAL FAILURE �1 Failure
Error numbers

Standard error numbers
XLAL EIO 5 I/O error
XLAL ENOMEM 12 Memory allocation error
XLAL EFAULT 14 Invalid pointer
XLAL EINVAL 22 Invalid argument
XLAL EDOM 33 Input domain error
XLAL ERANGE 34 Output range error
Extended error numbers begin at 128

Common error numbers for XLAL functions
XLAL EFAILED 128 Generic failure
XLAL EBADLEN 129 Inconsistent or invalid vector length
Specific mathematical and numerical error numbers begin at 256

IEEE floating point error numbers
XLAL EFPINVAL 256 Invalid floating point operation
XLAL EFPDIV0 257 Division by zero floating point error
XLAL EFPOVRFLW 258 Floating point overflow error
XLAL EFPUNDFLW 259 Floating point underflow error
XLAL EFPINEXCT 260 Floating point inexact error
Numerical algorithm error numbers
XLAL EMAXITER 261 Exceeded maximum number of iterations
XLAL EDIVERGE 262 Series is diverging
XLAL ESING 263 Apparent singularity detected
XLAL ETOL 264 Failed to reach specified tolerance
XLAL ELOSS 265 Loss of accuracy
Failure from within a function call: “or” error number with this

XLAL EFUNC 1024 Internal function call failed

Note that the last error number, XLAL_EFUNC, corresponds to a bit that can be set on the current error number (using
a bitwise-or) to indicate that the this error occurred from within an internal function call, thereby preserving some
information about the error.

In addition to setting xlalErrno a failure condition should also invoke the XLAL error handler XLALErrorHandler.
This is a function pointer (actually it can be a macro that results in a function pointer) to a function; its type is

typedef void XLALErrorHandlerType( const char *func, const char *file, int line, int errnum );

Thus the error handler takes the name of the function from which it is invoked, func, the file name of the source,
file, the line number where it is called, line, and the XLAL error number errnum. The default error handler,
XLALDefaultErrorHandler, will print an error message when it is invoked. The user may set the error handler to a
different error handler, e.g., one that aborts when a failure occurs. However, the error handler should not be changed
within a LAL or an XLAL function. Replacing the error handler should always be done in the top-level program.

To assist in setting xlalErrno and invoking the error handler, the function

void XLALError( const char *func, const char *file, int line, int errnum );

is provided which will perform both of these tasks. The arguments are the same as those of the error handler.
This function is called as part of the actions of the macros XLAL_ERROR, XLAL_ERROR_NULL, XLAL_ERROR_VOID,
XLAL_ERROR_REAL4, and XLAL_ERROR_REAL8, all of which take two argument: a character string containing the
name of the current function and the integer error number. These macros call XLALError with the filename given by
__FILE__, the line number __LINE__ where the macro occurs, and with the function name and error number. They
also return from the function with the appropriate failure return code (depending on which macro was used).

6 Documentation and unit tests
The conventions for these are not within the scope of this specification; they are described in the LAL Software
Documentation. It is a good guide that every function with external linkage should have a unit test that can be run
automatically to make sure it is (and continues to be) sane.

page 11 of 23



12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 23	


OTHER	
  LIBRARIES	
  (REQUIRED	
  FOR	
  LAL)	
  	
  	




Other	
  libraries	
  required	
  for	
  LAL	
  	

•  LAL	
  is	
  not	
  a	
  stand-­‐alone	
  library:	
  
–  Two	
  other	
  libraries	
  are	
  required	
  to	
  build	
  and	
  use	
  LAL	
  	
  

•  “Fastest	
  Fourier	
  Transform	
  in	
  the	
  West	
  (version	
  3)”	
  FFTW3	
  library	
  
–  The	
  FFTW3	
  library	
  is	
  integrated	
  by	
  wrapping	
  certain	
  FFTW3	
  rou>nes	
  
within	
  LAL	
  func>ons.	
  	
  

–  Other	
  LAL	
  func>ons	
  should	
  then	
  use	
  these	
  wrapping	
  func>ons	
  rather	
  
than	
  make	
  direct	
  calls	
  to	
  the	
  FFTW3	
  API.	
  	
  

•  	
  “GNU	
  Scien>fic	
  Library”	
  GSL	
  library.	
  	
  
–  The	
  GSL	
  library	
  provides	
  many	
  more	
  func>ons	
  than	
  FFTW3.	
  Some	
  of	
  
these	
  func>ons,	
  e.g.,	
  those	
  involving	
  file	
  I/O,	
  are	
  not	
  suitable	
  for	
  use	
  
within	
  LAL.	
  	
  

–  However,	
  the	
  vast	
  majority	
  of	
  the	
  func>ons	
  in	
  GSL	
  are	
  useful.	
  	
  
–  To	
  facilitate	
  their	
  use	
  within	
  LAL,	
  the	
  macros	
  CALLGSL(	
  statement,	
  
status	
  )	
  and	
  TRYGSL(	
  statement,	
  status	
  )	
  are	
  provided.	
  

	
  
12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 24	




Data	
  format	


•  There	
  are	
  currently	
  two	
  official	
  exchange	
  data	
  
formats	
  within	
  the	
  LSC:	
  	
  
– XML-­‐based	
  “LIGO	
  Lightweight”	
  LIGOlw	
  format	
  
– binary	
  “Interferometric	
  Gravita>onal	
  Wave	
  
Detector	
  Data	
  Frame	
  Format”	
  or	
  “Frame”	
  format.	
  	
  

– Libraries	
  with	
  rou>nes	
  that	
  are	
  specialized	
  for	
  I/O	
  
with	
  these	
  two	
  formats	
  are	
  also	
  available.	
  	
  

	


12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 25	




LALSupport,	
  LALMetaIo,	
  LALFrame	
  	


•  LALSupport	
  library	
  :	
  
–  Basic	
  file	
  I/O	
  rou>nes	
  

•  LALMetaIo	
  library	
  :	
  
–  I/O	
  rou>nes	
  that	
  are	
  used	
  to	
  read/write	
  the	
  LIGO	
  
lightweight	
  data	
  format.	
  These	
  rou>nes	
  use	
  the	
  
METAIO	
  library	
  rou>nes	
  as	
  their	
  engine.	
  	
  

•  LALFrame	
  library	
  :	
  
–  I/O	
  rou>nes	
  that	
  are	
  used	
  to	
  read/write	
  the	
  Frame	
  
data	
  format.	
  These	
  rou>nes	
  use	
  the	
  FRAME	
  library	
  
rou>nes	
  as	
  their	
  engine	


12/10/25	
 KAGRA	
  データ解析作業ミーティング	
 26	



