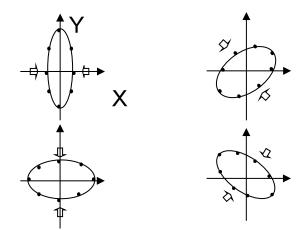
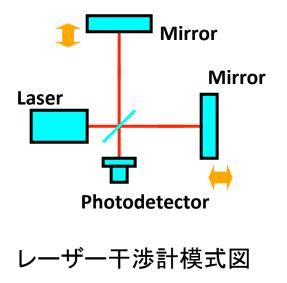
特別推進研究研究会・宇宙線研究所共同利用研究会「高エネルギーガンマ線でみる極限宇宙2012」

KAGRAデータ解析と、 重力波検出器ネットワークによる 突発天体現象重力波の検出

田越秀行(大阪大学)


2012/09/25, ICRR

目次


- ・重力波の紹介
- KAGRAと世界的状況
- ・ソース、重力波突発現象
- ・トリガー探査
- 多様な観測によるフォローアップ ^{重力波の速報}

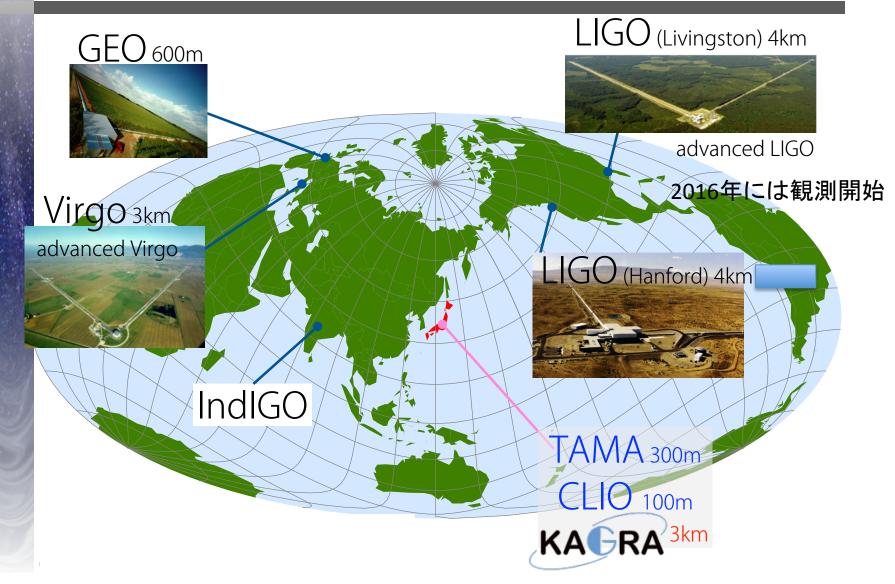
重力波

重力波とは・・・一般相対論による時空のゆがみの波動 伝搬の効果・・・物体に4重極的変形を及ぼす

重力波がz方向へ伝搬する ときの質点の動き

重力波の発生

重力波の発生要因


•質量分布の時間変化

$rac{v}{-}$ \sim 1	and/or	$\left(\frac{v^2}{c^2}\sim\right) \ \frac{GM}{rc^2}\sim 1$	しの場合,より
<i>C</i> 高速運動		\ <i>c[∠] / rc[∠]</i> 強い重力場	強い重力波が
			放出される

•非球対称的変化(4重極モーメントの変化)

ニュートンカ学同様、球対称の物体が球対称のまま変化しても、何も起こらない

地下サイト

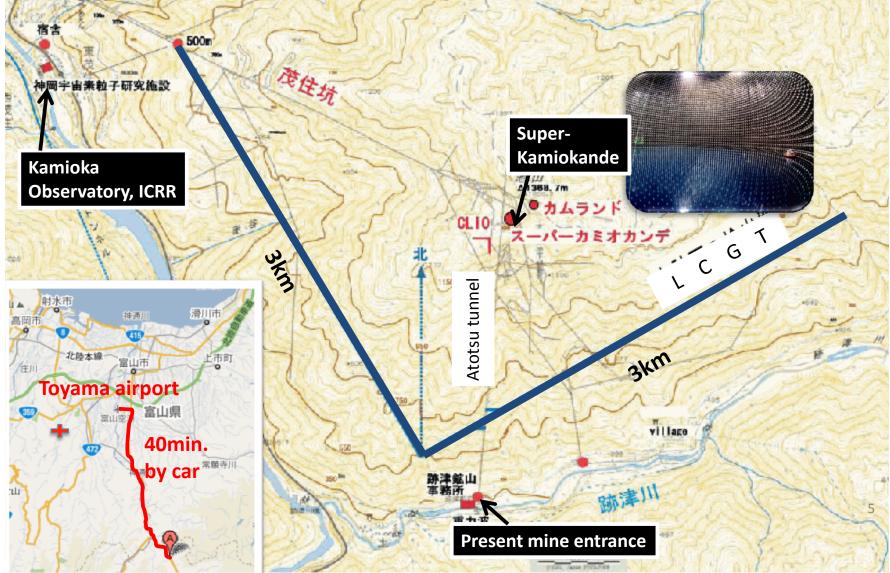
岐阜県神岡鉱山 静謐で安定した環境

<mark>低温鏡</mark> 20K サファイヤ単結晶

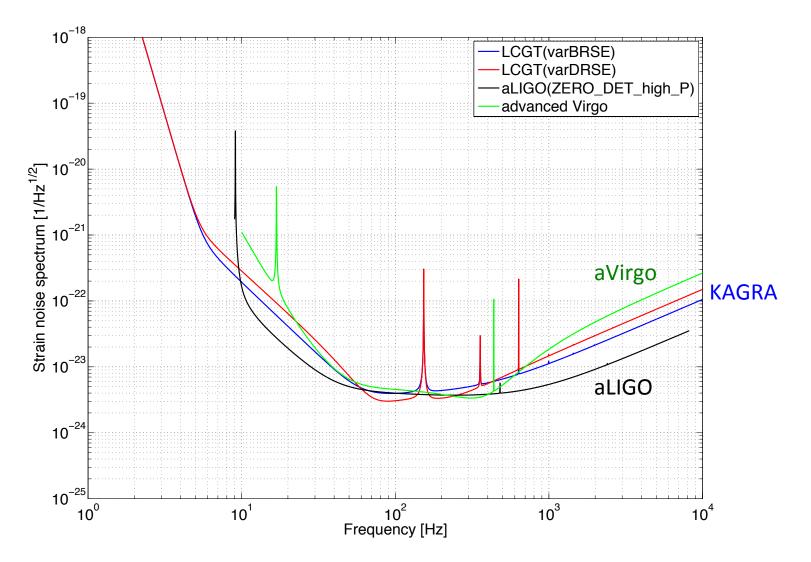
3km 基線長

スケジュール

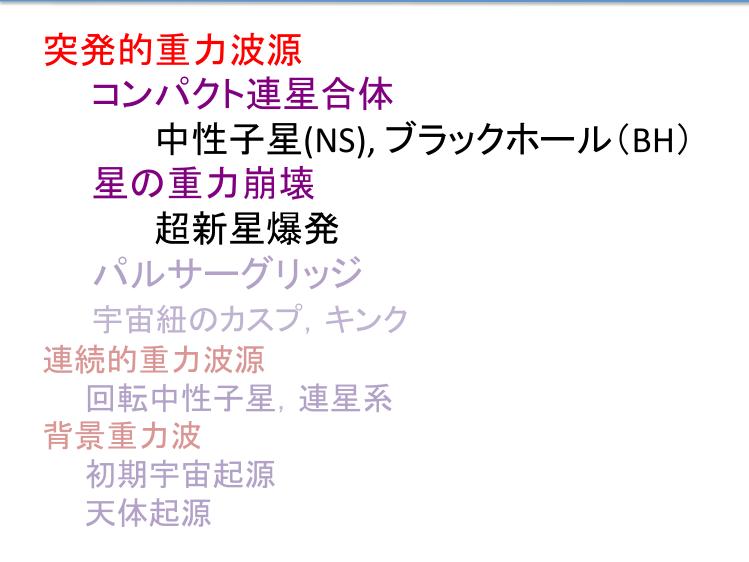
2010:建設開始 © ICRI 2015:常温でのテスト観測 (iKAGRA)


2018- (or 2017後半?)-: 低温での高感度観測運転(bKAGRA)

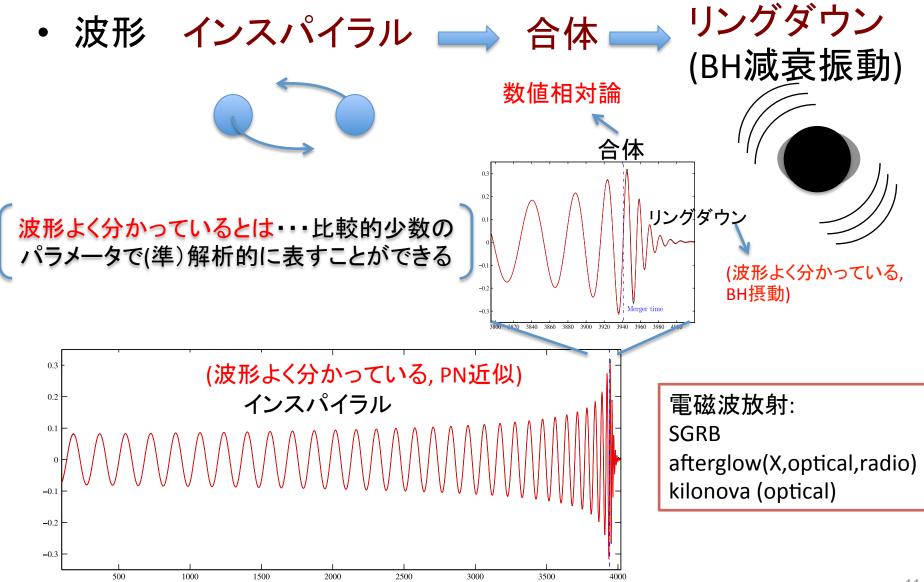
© ICRR, university of Tokyo



KAGRA -- Location--



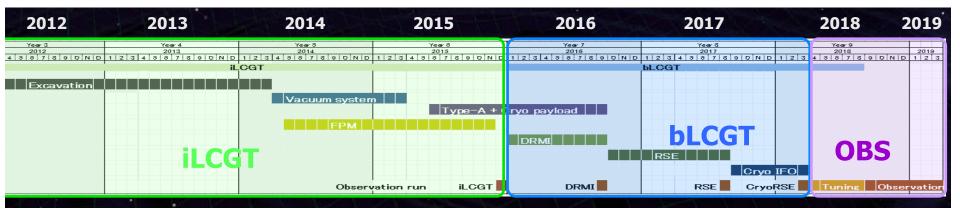
Noise spectrum --aLIGO,aVIRGO,KAGRA--



Data for the KAGRA noise spectrum : http://gwcenter.icrr.u-tokyo.ac.jp/en/researcher/parameter

主な重力波源

コンパクト連星合体


NS-NS for KAGRA

NS-NS binary coalescence Horizon distance (S/N=8, optimal direction, face-on)

iKAGRA 29Mpc => (In LIGO's definition, 18Mpc)

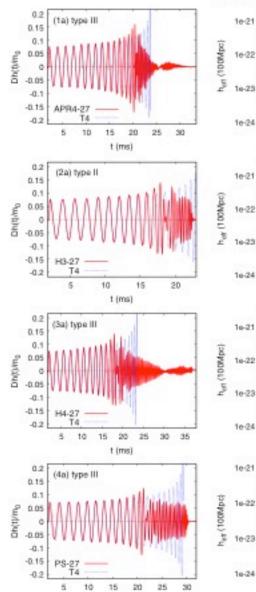
bKAGRA 280Mpc (173Mpc)


(LIGO's definition)=(KAGRA's definition)x($\sqrt{2}$)x(0.44) (Assuming phase is measured. Averaged over the sky and inclination angle.)

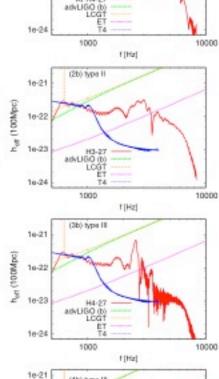
Event rate for bKAGRA : $9.8^{+14}_{-6.6} \text{ yr}^{-1}$

(based on Kim ('08), Lorimer ('08)) 12

中性子星 連星合体 HMNS

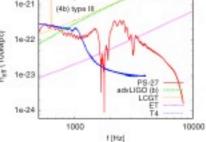


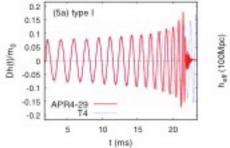
0.1

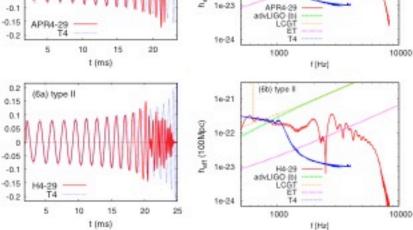

-0.05

-0.1

Dh01/m₀ 0.05




t (ms)



(1b) type III

APR4-27

1e-21

16-22

(5b) type I

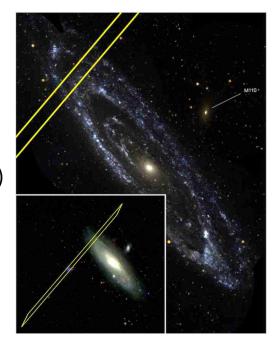
Basic value for the inspiral waveform

(m ₁ ,m ₂) [Msolar]	(1.4, 1.4)	(10, 1.4)	(10, 10)	(100, 1.4)
frequency@ISCO[Hz]	1570 Hz	386 Hz	220 Hz	43 Hz
duration(10Hz-ISCO)[sec]	1002 sec	224 sec	38 sec	46 sec
cycle(10Hz-ISCO)	16038	3585	605	743
orb. radius@10Hz[Mt]	174 Mt	68 Mt	47 Mt	16 Mt

 $Mt=m_1+m_2$

ISCO: Inner most stable circular orbit.

LIGO観測結果 -ガンマ線バースト-

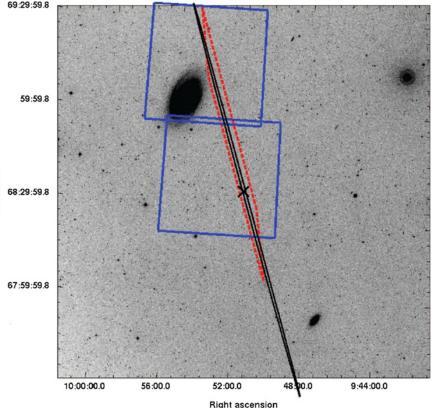

ガンマ線バースト: 1ミリ秒から1000秒という短時間だけ, ガンマ線が1日1回程度地球に到達する現象. 長いバースト(Long Burst): 継続時間2秒以上 短いバースト(Short Burst): 継続時間2秒以下

短いバーストの発生源(候補):連星中性子星,あるいは 中性子星ブラックホール連星の合体

GRB070201 SGRB, 発生方向: M31の方向 LIGO-H1ロックしていた.

(アンドロメダ星雲, 770kpc)

LIGOでのデータ解析の結果, この時刻には連星合体重力波は検出できない. つまり, M31で起こったコンパクト連星合体現象 ではない(信頼度99%以上で). Astrophys. J. 681, 1419 (2008)


Konus-Wind, INTEGRAL, and MESSENGER

LIGO観測結果 -ガンマ線バースト-

GRB051107 SGRB, 発生方向: M81 (3.6Mpc)の近傍 LIGO S5観測開始の前日でテスト運転中 LIGO-L1, H2はロックしていた

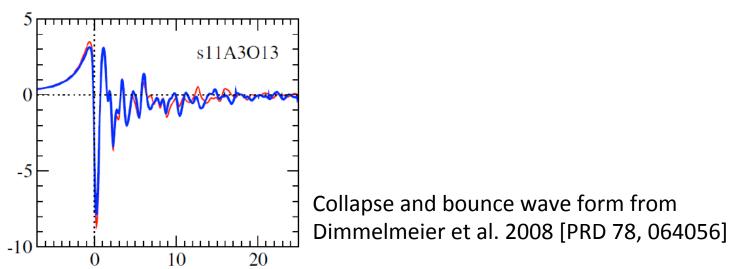
しかし、LIGOデータ解析の結果、 この時刻にNS-NS連星合体、 NS-BH連星合体は検出できない 従って、M81で起こったコンパクト 連星合体ではない

Astrophys. J. 755, 2 (2012)

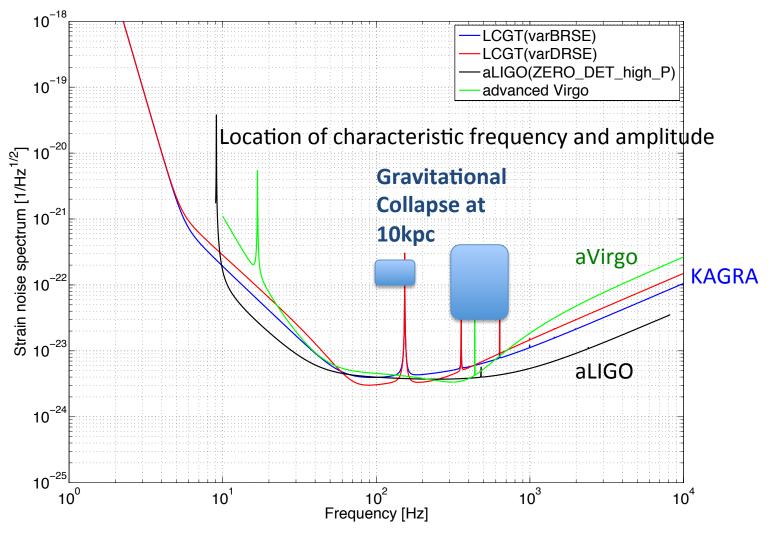
Figure 1. Central region of the M81 group, showing the original error trapezium (red dashed line) from the IPN and the refined 3σ error ellipse (solid black). The blue boxes are the regions studied in the optical. Figure from Hurley et al. (2010) Copyright (c) 2010 RAS.

重力崩壊型超新星爆発

Ref. Ott, CQG, 26, 063001 (2009), Fryer and New, LRR, 14, 1 (2011)


Various possible gravitational wave emission mechanism.

- Core collapse and bounce
- Rotational non-axisymmetric instabilities of proto-neutron star
- Post-bounce convection
- Non-radial pulsations of proto-neutron star


Related to the explosion mechanism

Anisotropic neutrino emission

etc.

星の重力崩壊

KAGRA, aLIGOは数100kpcまで観測可能

Dimmelmeier et al. ('08) PRD 78, 064056

天文観測との連携の重要性

•Triggered search

重力波以外の信号(電磁波, ニュートリノ)の観測から時刻、方向が 分かれば, 重力波検出に極めて有利(しきい値が下げられる). (e.g., Kochanek, Piran (1993))

例:ガンマ線バースト: 星の重力崩壊 or コンパクト連星合体 ニュートリノ:銀河系近傍での超新星爆発 広視野光学赤外望遠鏡: 超新星爆発, GRB監視

実際, LIGO-Virgo の2009-2010データの解析では, 154個のGRBの時刻, 方向の情報を使ったトリガー探査では, 使わない解析より2倍程度しきい値が下げられた. (距離で2倍遠くまで観測できた) arXiv:1205.2216

天文観測との連携の重要性

• フォローアップ観測

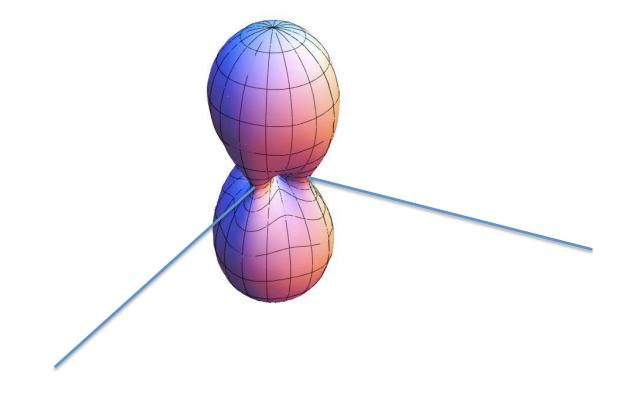
重力波をまず検出し、その時刻、方向を速報して電磁波で観測を行う. 重力波の広視野性を生かす.

重力波検出の確からしさの向上,重力波源の性質の究明.

重力波検出器ネットワークの必要性

重力波観測による方向決定

突発的ソースに対しては、レーザー干渉計は1台では 波の到来方向が分からない。


波の到来方向を知る方法

・地球の運動によるドップラー効果(1台でも可能)
(長時間継続する重力波のみ有効(パルサーからの重力波))

•3台以上の検出器での検出時刻の差の情報

他にも複数検出器ネットワークは 全天カバー率の向上 重力波検出の信頼度向上 に重要.

レーザー干渉計アンテナパターン

方向決定精度

NS-NS連星合体 @180Mpc L:LIGO-Livingston H:LIGO-Hanford V: Virgo K: KAGRA median of $\delta\Omega$ [Deg²] LHV **LHVK** LHVI I:LIGO-India (1.4, 1.4) Msolar 30.25 9.5 9.0 (95%CI) Ref. J.Veitch et al., PRD85, 104045 (2012) シミュレーション

direction, inclination, polarization angle are given randomly

方向決定精度はだいたい <u>10-30 Deg²</u> (@180Mpc).

see also Wen and Chen (2010) Fairhurst (2011)

速報の可能性

電磁波などとの相互フォローアップを考え, 例えば連星中性子星合体の高速処理をするなら, 質量範囲を狭めるなどをすれば,原理的には数分以内で可能.

データ転送,前処理を高速処理する工夫が必要.

m ₁ , m ₂	1-2Msolar	1.3-1.5Msolar
テンプレート数	4800	36
CPU power	1.2Gflops	8.8Mflops

信号継続時間(約10分)と同じ時間で解析を終了するために必要な演算速度

予報の可能性

(1.4,1.4)Msolar case

Time to coalescence and GW frequency, S/N loss rate

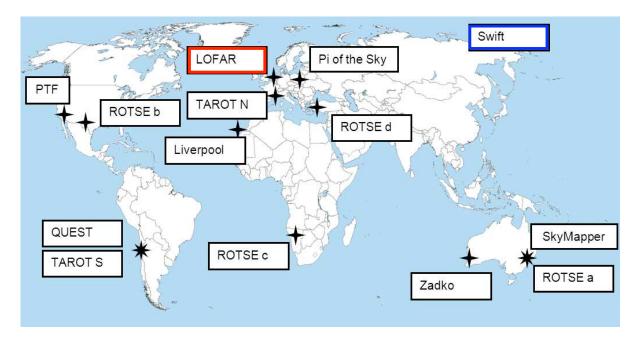
	60 sec	30 sec	10 sec	5 sec	1 sec
GW freq.	29Hz	37 Hz	56Hz	73Hz	133Hz
ρ/ρ ₀	0.15	0.21	0.37	0.50	0.76

 ρ_0 : S/N when integrating to ISCO

(1.4,1.4)Msolar

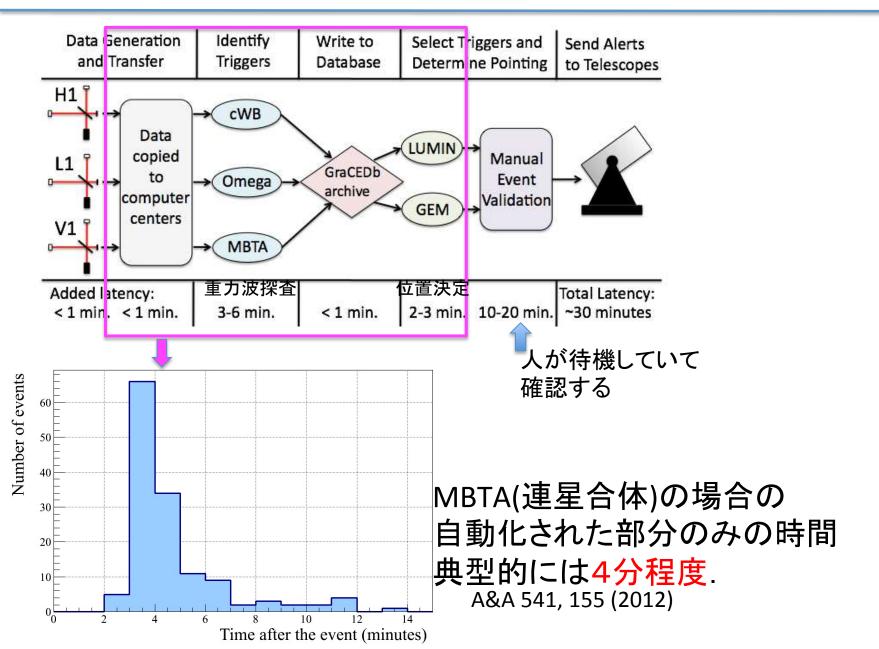
Cutoff frequency : 56Hz (10 sec before ISCO)

S/N is less than 37% of total value


Further, source localization accuracy becomes worse.

Nevertheless, if the event occur near our Galaxy, we will have a chance to detect such event before coalescence.

実例:LIGO – Virgo 観測


Ref. A&A 539, 124 (2012), A&A 541, 155 (2012)

LIGO S6, Virgo VSR2 の2つの期間に、電磁波観測によるfollow-up を目指して、low-latencyパイプラインによる重力波イベント候補探 査と、候補イベントの位置の速報が行われた. (12/17/2009-1/8/2010, 9/2-10/20/2010)

参加した観測機器

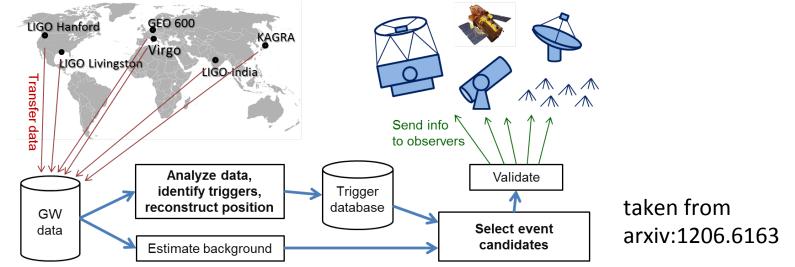
実例: LIGO – Virgo 観測 --フローチャート--

実例:LIGO – Virgo 観測--電磁波で観測すべき場所を選ぶ--

レーザー干渉計による位置決定精度は数10~100平方度 (initial LIGO,VirgoなのでaLIGOよりさらに悪い). ほとんどの天文観測機器の視野角(FOV)より大きい.

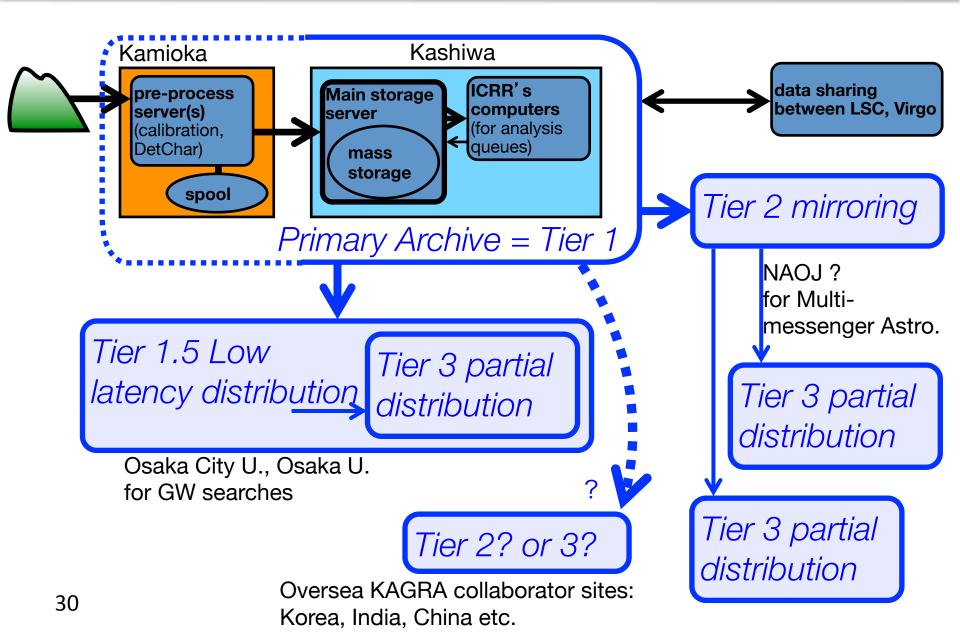
銀河カタログ(The Gravitational Wave Galaxy Catalog (GWGC)) を用いて, 探査すべき領域をしぼる (典型的には3-4deg²まで).

GWGC: 既存の複数の文献から集めてまとめたもの. 100Mpc以内の53,225個の銀河、150個の銀河系内球状星団を含む. SDSSデータとの比較で、40Mpc以内の銀河については ほぼcompleteと思われる.


KAGRAでの高速データ解析,速報

KAGRAでも、高速データ解析と天文観測への速報ができるようなシステムを構築する.

とりあえずは、自動化部分は数分で終わらせることが目標.


フォローアップ観測すべき方向は、重力波だけでなく、事前に銀河カタログなどを用意して絞り込める可能性がある(要検討).

以上はKAGRAの国際重力波観測網への参加が前提

29

KAGRA Data flow

まとめ

- 第2世代レーザー干渉計重力波検出器の観測は数年後始まる advanced LIGO 2016年頃
 KAGRA 2018年頃
- 電磁波観測との連携により、重力波検出の信頼度、検出可能距離が増大する。
- それと同時に、重力波発生天体の正体を明らかにしたり、メカニズム解明に寄与できる。
- 新学術領域(新しい科研費)開始 2012-2016 「重力波天体の多様な観測による宇宙物理学の新展開」 国内の天体観測装置との協力体制構築
- データ解析システム構築, LIGO-Virgoとの協力関係構築を進める.

End