

<u>Outline</u>

Heat extraction via suspensions -> trade-off of power & thick fiber

KAGRA: ~400kW in arm, ϕ 1.6cm fiber (l=30cm) ET: Xylophone configuration, 18kW in ET-LF, 3MW in ET-HF

Heated mirrors in ET-HF can be troublesome (thermal lensing etc.).

ET/KAGRA Parameters

Parameter	ET-HF	ET-LF	Table A1. Parameter list of the bKAGRA.	
Arm length Input power (after IMC) Arm power	10 km 500 W 3 MW	10 km 3 W 18 kW	Finesse Test-mass diameter Test-mass thickness Mass	1550 22–25 cm 15 cm 22.8–30 kg
Temperature Mirror material Mirror diameter/thickness	290 K Fused silica 62 cm/30 cm	10 K Silicon 62 cm/30 cm	Laser power at the beamsplitter Mirror temperature Absorption in ITM substrate Absorption in coatings	515–825 W 20 K 20–50 ppm cm ⁻¹ 0.5–1.0 ppm
Mirror masses Laser wavelength SR-phase SR transmittance Quantum noise suppression Beam shape	200 kg 1064 nm Tuned (0.0) 10 % 10 dB	211 kg 1550 nm Detuned (0.6) 20% 10 dB TEM ₅₀	Optical loss of a test mass Transmittance of ETM ITM/ETM radii of curvature Beam radii on ITM/ETM Power/signal-recycling mirror reflectivity Sapphire fiber length Sapphire fiber diameter	45 ppm 10 ppm 1680/1870 m 3.5/4.0 cm 90/85% 30 cm 1.6 mm
Beam radius Clipping loss Suspension Seismic (for $f > 1$ Hz) Gravity gradient subtraction	7.25 cm 1.6 ppm Superattenuator $1 \cdot 10^{-7} \text{ m/}f^2$ None	12 cm 1.6 ppm 5×10 m $5 \cdot 10^{-9}$ m/ f^2 Factor 50	Tunnel tilt Vertical–horizontal coupling Mechanical loss of substrate Mechanical loss of silica/tantala coatings Mechanical loss of fiber Vacuum level	1/300 1/200 1e-8 3e-4/5e-4 2e-7 2e-7 Pa

Reference: [1] S.Hild et al, CQG 27 (2010) [2] K.Somiya et al, CQG 29 (2012)

Proposal of 120K Silicon for ET-HF

- ✓ High thermal conductivity -> high power & thin fiber
- ✓ Thermal expansion coefficient is zero at 120K -> no TE
- \checkmark No thermal lensing
- ✓ Coating mechanical loss peak at 20K can be avoided
- \checkmark Some thermal noise improvement by lowering T

Suspension thermal noise with 120K Silicon

Suspension thermal noise (single/double-loop)

iLIGO paper by Gonzalez (2000)

- Single-loop suspension; tilted
- Boundary condition at bottom: x"(z)=0

AdVirgo document by PPP (2009)

- Double-loop suspension

- Boundary condition at bottom: x'(z)=0

With a same parameter set, the floor levels are different by sqrt[2].

Difference for dissipation at the bottom!! [Braginsky 1999]

Dissipation in cryogenic suspensions

- Thermal properties of Sapphire have been measured and the measured values are used in the calculation
- Though the profile has been derived, we just use the averaged temperature for simplicity

120K Silicon ET-HF

Temperature profile of 10-120K 2m fiber

- Suspension TE noise is low at the top/bottom of the fiber, where dissipation concentrates.
- Detailed calculation has not been done yet.

120K Silicon ET-HF (continue)

- \cdot No mirror TE noise
- No thermal lensing
- \cdot No need of thick fiber
- · Low suspension TE noise

Issues

- Temperature control
- Vertical-mode TE noise

<u>Recent activities</u>

- Rana somehow likes the idea of 120K Silicon and has proposed it for LIGO3 (but with radiation cooling)
- Vertical suspension-point interferometer to reduce vertical suspension thermal noise has been proposed
- Suspension thermal noise calculation shall be done soon