ELITES Thermal Noise Workshop @ Jena University

BS Thermal Lensing in KAGRA

Yuta Michimura

Tsubono Group University of Tokyo Aug 16, 2012

What's Thermal Lensing?

- high power beam + absorption in a mirror
- heats a mirror and
 - the mirror deformation by thermal expansion
 → mirror curvature changes
 - non-uniform refractive index change

 \rightarrow mirror act like a lens

cause wavefront distortion
 → reduce sensitivity

Why BS?

- mirrors that transmits light matters ITMs and BS
- ITMs are cooled down in KAGRA and sappire has high thermal conductivity
- BS introduces asymmetry between X / Y arm BS room temperature fused-silica intra-cavity 800 W

cryogenic mirrors

intra-cavity 400 kW

20 K, sappire

How to Estimate the Effect?

- Simulate temperature distribution and thermal expansion using COMSOL Multiphysics (finite element analysis)
- 2. Calculate wavefront distortion of the BS reflected/transmitted light
- Calculate the sensitivity decrease using FINESSE (IFO simulation software)

Estimation Procedure

- Simulate temperature distribution and thermal expansion using COMSOL Multiphysics (finite element analysis)
- 2. Calculate wavefront distortion of the BS reflected/transmitted light
- Calculate the sensitivity decrease using FINESSE (IFO simulation software)

Parameters Used

Temperature Distribution

y Z x

Thermal Expansion

y z x

Estimation Procedure

- Simulate temperature distribution and thermal expansion using COMSOL Multiphysics (finite element analysis)
- 2. Calculate wavefront distortion of the BS reflected/transmitted light
- Calculate the sensitivity decrease using FINESSE (IFO simulation software)

Breaking Down to Some Numbers

- fit HR surface by simple curvature
- fit AR surface by simple curvature integrated optical path length from HR surface considering refractive index distribution
- calculate TEM00' simply by using ABCD matrix
- loss = 1 (distorted beam) x (TEM00')
 = 1 (TEM00' + HOMs) x (TEM00')
 = (HOMs) x (TEM00')

Estimation Procedure

- Simulate temperature distribution and thermal expansion using COMSOL Multiphysics (finite element analysis)
- 2. Calculate wavefront distortion of the BS reflected/transmitted light
- 3. Calculate the sensitivity decrease using FINESSE (IFO simulation software)

Calculating Sensitivity Decrease

- numbers we've got so far
 - HR surface curvature
 - AR surface curvature
 - HR reflection loss
 - transmission loss
- put them all into the FINESSE model \rightarrow IFO sensitivity