

Current status of KAGRA data analysis, detector characterization

Kazuhiro Hayama (NAOJ)

KAGRA project

Start Tunnel Excavation

Mozumi entrance

980m(620m+360m

Y arm direction: 28.31 deg. from the North.

Height from the sea level : about 372m.

2 entrances for the experiment room.

Center, Xend, Yend are inside more than 200m from the surface of the mountain.

Tunnel floor is tilted by 1/300 for natural water drainage.

Height of the Xend: 382.095m.

Height of the Yend: 362.928m.

470

Surface Building

Current Schedule

KAGRA Scientific Research on Innovative Area NACOJ

KAGRA Data Analysis

Target GWs:

- Compact Binary Coalescence NS-NS, NS-BH, BH-BH
- Bursts
 Supernovae, SGR, IMBH, pulsar glitch, star quake
- Continuous
 Pulsar, LMXB, ...
- Stochastic Background Inflation, ...

We will develop a search pipeline for each target.

Multi-Messenger Observations

Play an important role in

- confirmation of the first detection
- more science (understanding various astronomical explosions etc.)
 - Core-collapse supernova
 - Neutrino, Visible, ...
 - SK, wide sky optical telescopes, ...
 - Compact binary coalescence
 - Related to GRB? Gamma-ray, Visible, Radio, ...
 - MAXI, NASU radio telescopes, wide sky optical telescopes, ...
 - SGR, pulsar glitch, ...

Figure 4-5: Relative arrival time of various emissions from core-collapse supernovae, as a function of time relative to peak gravitational emissions.

Figure 4-2: Relative arrival time of various emissions from NS-NS and NS-BH binary coalescence. Times are measured from from peak gravitational wave emissions.

Software Development

- Own search pipelines for all types of GWs Important for cross check, redundancy, ...
 - Single detector pipelines
 - Multiple detector pipelines
- Computation environment (GRID, ...)

MultiMessenger observation

- Low-latency
 - GPGPU, parallel computing, FPGA,
- Ultra-low false alarm rate
 - Real-time Veto analysis <-- Detector characterization</p>
 - Need new method

Data Analysis Schedule

	2012	2013	2014	2015 iKAGRA	2016	2017 bKAGRA	2018
Target	Prepare Data Analysis for 4th year			System Test	Build up full data system	Analyze Co Followup v Ol	vith Other
Hardware	small o mini-sy		partial s	system	<u>full</u> system	+ cpu, s peripl	torage, nerals
Software	Construct common environment Implement GW search			whole dat			

Data Flow

Requirement of Analysis System


~~~	~~~	~~~	~~~	~~~
-		-		-0000

ite	requirements		
Network and Pre-p	~70 GB/hour		
	two weeks safety spool	25 TB	
	on site study	500 TB	
Storage	KAGRA own	5 PB for 5 years	
,	Data Sharing	30 PB for 5-sites	
	Compact Binary	a few ~ several Tflops	
Calculation costs for GW	Burst	~1 Tflops	
searches	Continuous	~1 Tflops	
	Stochastic	< 1 Tflops	
		need development,	
Software	Search pipeline	need development, migration from LV,	

Blue: iKAGRA, Red: bKAGRA



# **Designed Storage Server**







#### **Detector Characterization**





- Evaluation of data quality
  - Determine which data segment is available for science.
- Support diagnostics: --> help to shorten the commissioning period finding non-stationary components, artificial lines in channels. It will help to kill noise sources before KAGRA observing.
- Distribution of Veto information
- The unique information of KAGRA should be taken care within detchar so that other collaborators are not concerned about it to some extent.



#### **Human Resources**





- Chief: Kazuhiro Hayama
- Other Chiefs: Araya(GIF), Miyakawa(DGS), Aso(MIF), Kanda (DAS), Somiya(SEO)
- Staffs: Kokeyama(LIGO Livingston), Agatsuma(NAOJ),
- Students: Yamamoto, Yuzurihara, Tanaka

Most of them are not fully assigned to this group. We need active participants.



#### Interfaces



# KAGRA GW telescope

PEM, Aux. channels, Online-monitors, diagnostics

### **Detector Characterization**

Veto info, target veto, Data quality, calibration accuracy

# **Data Analysis**

Channels: Interfaced with many subsystems



# **Physics and Environmental Monitor**





Araya, f2f-July,2012



# **Detchar Base System**





- from remotely.
- **Developing monitors and contribute** to other collaborations.



# KAGRADeveloping the system on digital at NAOJNACTI

Hayama(NAOJ), Miyakawa(ICRR), Yamamoto, Yuzurihara(OCU), Susa(Titech), Dan (UT)





#### For Event Searches





Veto list generation				
Transient GW (CBC, Burst)	Continuous GW (pulsar, LMXB,)	Stochastic GW (Early Univ,)		
<ul> <li>Real-time glitch detection</li> <li>Glitch classification</li> <li>Coincidence analysis between the GW channel and auxiliary sensor channels.</li> <li></li> </ul>	<ul> <li>Line tracking</li> <li>Line detection</li> <li>Removal of high frequency spikes</li> <li></li> </ul>	<ul> <li>Noise floor monitor</li> <li>Non-stationary</li> <li></li> </ul>		



## **Software Development**





- Import of LVC software
  - Data quality monitor (Not all, but some)
  - Glitch detection pipeline (Several pipelines, need sophistication in progress.)
  - Coincidence analysis pipeline <- collaboration with UTB</p>
- New software requirement / sophistication
  - Noise modeling (power spectrum and, probably, glitch) (New method developed. Next slide)
  - Multivariate analysis <- collaboration with Korea GW.</p>
  - Glitch classification (One paper accepted.)



## **New Noise Modeling**



paper submission ready



22





## **END**

- 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 00000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 00000 - 0000 - 0000 - 0000 - 0000 - 0000 - 00000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000 - 0000



#### **DetChar Schedule**





- I. Prototype test in CLIO
  - o Installation test of detchar basic system at NAOJ.
  - o Test operation of detchar basic system during CLIO operation.
  - o Software development.

Will do ~this fall

#### **II. Computation platform**

- o 2Q-4Q2014: Implementation of detchar system in a pre-process server.
- o IQ-3Q2015: Installation of the pre-process server to a building.

#### **III.**Test operation

- o Operation of the detchar system during GIF operation from ~ June, 2015.
- o Operation during iKAGRA in ~ Nov. 2015.
- o Software development

#### **IV.Operation**

o Operation during bKAGRA from ~ Aug. 2018.



## Nasu radio telescope-GW detectors









- Looking for radio transients
- The optimal observation frequency(I.4GHz) for the radio afterglow from CGC
- Il radio transients detected so far, source is unknown.
- Project Nasu-LIGO, Nasu-TAMA analysis is in going.

Kyoto

Nasu

Tokyo