Reducing Thermal Noise in Advanced GW Detector Mirror Coatings

Innocenzo M. Pinto University of Sannio at Benevento (IT), INFN and LVC

in collaboration with : Riccardo DeSalvo Vincenzo Pierro Maria Principe

JGW – G12024

Outlook

- b-KAGRA mirror noise budget Reducing coating noise
- Optimizing coating materials
 Modeling glassy mixtures
- nm-layered SiO2//TiO2 composites
- Optimizing coating geometry Minimum noise dichroic coating

b-KAGRA Mirror Noise Budget

Substrate Thermoelastic Noise PSD

$$S_{sub}^{(\text{TE})}(f) = \frac{4\sqrt{2}}{\pi^2} \alpha^2 (1+\sigma)^2 \frac{k_B T^2 w_m}{\kappa} J(f)$$
$$J(f) = \int_0^\infty du \int_{-\infty}^\infty dv \frac{u^3 \exp(-u^2/2)}{(u^2+v^2)[(u^2+v^2)^2+4\pi^2 f^2]}$$
$$\alpha = \text{thermoelastic constant} \\ \sigma = \text{Poisson modulus} \qquad \text{of substrate; } w_m = \text{spot width}$$

κ = thermal conductivity

Valid beyond Braginsky's "adiabatic" assumption $(\kappa/\varrho Cf)^{1/2} < w_m$

[M. Cerdonio et al., Phys. Rev. D 63 (2001) 082003] (misprint in their eq. 21 fixed)

Coating Brownian Noise PSD

$$\begin{split} S_{coat}^{(B)}(f) &= \frac{2k_BT}{\sqrt{\pi^3}f} \frac{1-\sigma^2}{w_m Y} \phi_c \\ \phi_c &= \frac{d_1 + d_2}{\sqrt{\pi w_m}} \frac{1}{Y_\perp} \left\{ \left[\frac{Y}{1-\sigma^2} - \frac{2\sigma_\perp^2 YY_\parallel}{Y_\perp (1-\sigma^2)(1-\sigma_\parallel)} \right] \phi_\perp \\ &+ \frac{Y_\parallel \sigma_\perp (1-2\sigma)}{(1-\sigma_\parallel)(1-\sigma)} (\phi_\parallel - \phi_\perp) + \frac{Y_\parallel Y_\perp (1+\sigma)(1-2\sigma)^2}{Y(1-\sigma_\parallel^2)(1-\sigma)} \phi_\parallel \right\} \\ Y_\perp &= \frac{d_1 + d_2}{Y_1^{-1}d_1 + Y_2^{-1}d_2} \ ; Y_\parallel = \frac{Y_1 d_1 + Y_2 d_2}{d_1 + d_2} \\ \phi_\perp &= Y_\perp \left(\frac{Y_1^{-1}\phi_1 d_1 + Y_2^{-1}\phi_2 d_2}{Y_1 d_1 + d_2} \right) \ ; \phi_\parallel = Y_\parallel^{-1} \left(\frac{Y_1\phi_1 d_1 + Y_2\phi_2 d_2}{d_1 + d_2} \right) \\ \sigma_\perp &= \frac{\sigma_1 Y_1 d_1 + \sigma_2 Y_2 d_2}{Y_1 d_1 + Y_2 d_2} \\ \frac{\sigma_1 Y_1 d_1}{(1+\sigma_1)(1-2\sigma_1)} + \frac{\sigma_2 Y_2 d_2}{(1+\sigma_2)(1-2\sigma_2)} = -\frac{Y_\parallel (\sigma_\perp^2 Y_\parallel + \sigma_\parallel Y_\perp) (d_1 + d_2)}{(\sigma_\parallel + 1)[2\sigma_\perp^2 Y_\parallel - (1-\sigma_\parallel) Y_\perp]} \implies \sigma_\parallel \\ \phi_c &= \frac{d_1 + d_2}{\sqrt{\pi} w_m} \left(\frac{Y}{Y_\perp} \phi_\perp + \frac{Y_\parallel}{Y} \phi_\parallel \right) \end{split}$$

Reducing Coating Brownian Noise

• Optimizing Coating Materials

Low mechanical loss-angle per unit thickness (η_H) Depends **both** on complex Young modulus $\tilde{Y} = Y(1 - i\phi)$, **and** refractive index n_H ;

High dielectric contrast (n_H/n_L) helps *reducing the number of layers* (coating thickness) needed for a prescribed coating transmittance;

Low dielectric losses $(Im[n_H])$ *increases power-handling* capability.

Titania Doped Tantala

To date, most successful attempt to reduce thermal noise by improving material properties is LMA's "formula 2" TiO_2 - doped Ta_2O_5 [G.M. Harry et al, Class. Quantum Grav. 24 (2007) 405].

How to optimize glassy-mixtures?

•Extensive Experimental Trial-and-Error (LMA, CSIRO);

- •Solid State Modeling/Simulation Glasgow (LIGO) Urbino (Virgo)
- •Effective Medium (Mixture) Approach. (Sannio)

We need reliable values for the material parameters !

Loss Angle Reduction in Doped Glasses

Acoustic oscillations (thermal phonons) in a *symmetric* double-well potential drive well-to-well jumps \implies dissipation.

Doping (and/or other structural stresses) may destroy the potential symmetry, resulting into *well-trapping* \implies *reduced* dissipation...

[J.S. Wu and C.C. Yu, "How Stress can Reduce Dissipation in Glasses, " Phys. Rev. B84 (2011) 174109]

Trustable Numbers Needed

Frequently quoted values must be handled w. care, especially for Titania ...

	SiO ₂	TiTa ₂ O ₅	Ta ₂ O ₅	TiO ₂	
Loss angle	0.4×10 ⁻⁴ [37]				
	0.5×10 ⁻⁴	2.3×10 ⁻⁴	3.8×10 ⁻⁴ ^[1]	6.3×10 ⁻³ deduced from	
	10 ^{-3 on} sapphire [47]	2×10 ⁻⁴ [36]		[48]	
Young's modulus	72 [1, 10, 37]	140 [37]	140 [37]	290 ^[12]	
(GPa)	40-60				
ratio	0.17 [1, 10]	0.23 [6]	0.23 [37]	0.28 [12]	

J. Franc et al., ET-021-09 (2009)

Values from a *single* experiment: 25-doublets QWL Silica/Titania coating [P. Amico et al., J. Phys. Conf. Ser. 32 (2006) 413]. Thickness of Titania layers was 116nm. Well above limit-thickness for preventing crystallization upon annealing [S. Chao et al., J. Opt. Soc. Am. A16 (1999) 1477]. Reported loss angle most likely due to crystallization.

In the amorphous phase Y_{TiO2} is 160 - 170 Gpa. [T. Modes et al., Surf. Coat. Technol. 200 (2005) 306] Quoted Y = 290 Gpa is OK for the crystalline (Rutile) phase [O. Zywitzki, et al., Surf. Coat. Technol. 180 (2004) 538].

Large spreads among values obtained from different measurement techniques...

Conjectured values - No direct measurements of Y or σ on doped Tantala reported yet.

[I. Pinto et al., LIGO-G1100586]

Material Loss Angles from Coating Noise PSD

Use TNI measurements and results :

1	QWL	Silica	Tantala	REO	8.25 ± 0.3
2	Optimized	Silica	Tantala	LMA	6.85 ± 0.2
3	QWL	Silica	Doped Tantala	LMA	6.0 ± 0.25
4	Dichroic	Silica	Doped Tantala	LMA	5.5 ± 0.5

and G. Harry's mainstream formula for coating noise (vanishing Poisson limit)

$$\phi_{c} = b_{L}d_{L}\phi_{L} + b_{H}d_{H}\phi_{H}$$
$$b_{L,H} = (Y_{L,H} / Y_{s} + Y_{s} / Y_{L,H}) / (w\sqrt{\pi})$$

to retrieve the loss angles from fiducially known thicknesses etc.

Coating #	d_L	d_{H}
1	2.72 µm	1.83 µm
2	4.05 µm	1.36 µm
3	2.54 µm	1.67 µm
3	2.36 µm	1.45 µm

A. Villar et al., LIGO-G1000937 (2010)

Material Loss Angles from TNI Measurements

Material Loss Angles from Coating Noise PSD

Silica (TiO_2) and plain Tantala (Ta_2O_5)

[A. Villar et al., LIGO-G 1101096]

Loss Angles from Coating Noise PSD, contd.

Doped Tantala (TiO₂::Ta₂O₅)

[A. Villar et al., LIGO-G 1101096]

Comparison between TNI and Q-based Material Loss Angle Estimates

Good agreement for Silica;

Somewhat larger loss angle for Tantala (plain & doped).

Doped/Undoped loss-angle ratio is the same

Reason of discrepancy yet unclear

[A. Villar et al., LIGO-G 1101096]

Diffusion at Interfaces...

Tomography & Density Profiles

[F. Granata et al. (LMA) , LIGO/G120514]

... diffusion length largely annealing-schedule dependent...

... may Explain in part the Discrepancy

• Simple Mixture Modeling

Simple Mixture Modeling Effective Medium Theories (EMT)

Composite materials (mixtures) can be modeled by an appropriately-weighted average of macroscopic properties of both components.

Replace actual, "composite" system with a homogeneous, "effective" medium.

Effective for a wide variety of properties dielectric constant index of refraction elastic modulus loss angle etc.

Results depend somewhat on inclusion concentration, morphology, orientation.

[A. Villar et al., LIGO-G 1101096]

EMT for Composite Optical Properties

Bruggemann formula:

Chien-Jen Tang, "Analysis of Ta_2O_5 -TiO₂ and Ta_2O_5 -SiO₂ Composite Films Prepared by Ion-Beam Sputtering Deposition," PhD Dissertation, Taiwan National Central University (2006).

EMT for Composite Viscoelastic Properties

Barta's microscopic derivation of Bruggemann-like mixture formulas for viscoelastic parameters of a glassy-oxide composite yields

$$\begin{cases} (1-\eta_2)\frac{X-X_1}{2X+(X_1/y_1)(\sigma_1+1)} + \eta_2\frac{X-X_2}{2X+(X_2/y_2)(\sigma_2+1)} = 0\\ (1-\eta_2)\frac{(X/y)-(X_1/y_1)}{2X+(X_1/y_1)(\sigma_1+1)} + \eta_2\frac{(X/y)-(X_2/y_2)}{2X+(X_2/y_2)(\sigma_2+1)} = 0 \end{cases}$$

$$X = \frac{\sigma Y}{\sigma + 1}, \ y = \sigma - 2$$

System can be solved in closed form . [S. Barta, «Effective Young modulus and Poisson's ratio for the particulate composite," J. Appl. Phys. 75 (1994) 3258].

[A. Villar et al., LIGO-G 1101096]

TNI Result vs EMT Prediction

We can compare the doped Tantala loss angle distribution obtained from TNI measurements to the prediction of EMT, using Scott-MacCrone loss angle for Titania, and the TNI result for plain Tantala

TNI : distribution deduced from doped coating measurement, using the marginal distribution of Silica loss angle from the undoped coating measurements.

Bruggeman-Barta : distribution deduced using Scott-MacCrone value for Titania loss angle, with plain Tantala loss-angle distribution from undoped coating measurements.

[A. Villar et al., LIGO-G 1101096]

• How to do better than TiO2::Ta2O5 ?

A Direct Measurement of ϕ_{TiO_2}

THE REVIEW OF SCIENTIFIC INSTRUMENTS

VOLUME 39, NUMBER 6

JUNE 1968

Apparatus for Mechanical Loss Measurements in Low Loss Materials at Audio Frequencies and Low Temperatures*

W. W. SCOTT AND R. K. MACCRONE**

Department of Metallurgy and Materials Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (Received 8 January 1968; and in final form, 14 February 1968)

A new apparatus for measuring mechanical loss in low loss materials at low temperatures is decribed. The method has several advantages over existing techniques. Using this apparatus, losses as low as 2×10^{-4} with a resolution of 10^{-7} have been reproducibly measured at 4.2° K in TiO₂ (rutile).

- Introduces an apparatus conceptually similar to the familiar «cantilever».
- Little details about tested materials. Speaks of *lightly reduced TiO2* in the main body, but mentions Rutile in the title;
- Reported results over a wide range of temperatures from 5K to 400K...

Titania is Nasty

J. Szczyrbowski, Surf. Coat. Technol. 112 (1999) 261–266.

A SiO₂//TiO₂ Coating Prototype

P. Amico et al., J. Phys. Conf. Ser. 32 (2006) 413;

F. Travasso, ILIAS 05 Conference presentation (2005).

1 sq. inch, 50 μ m thick membranes coated with 25 x TiO₂ (pure) / SiO₂ QWL-doublets.

Coatings obtained by e - beam evaporation. Manufactured by italian Company SILO (www.silo.it). *No* annealing details. *No* TEM images.

Thickness of pure TiO₂ QWL layers \cong 116nm. Crystallization expected.

Used to estimated Titania loss angle in [Franc et al., ET-021-09 (2009)]

Trustable Numbers Needed

Frequently quoted values must be handled w. care, especially for Titania ...

	SiO ₂	TiTa ₂ O ₅	Ta ₂ O ₅	TiO ₂	-
Loss angle	0.4×10 ⁻⁴ [37]				-
	0.5×10 ⁻⁴	2.3×10 ⁻⁴	3.8×10 ⁻⁴ ^[1]	6.3×10 ⁻³ deduced from	
	10 ^{*3 on} sapphire [47]	2×10 ⁻⁴ [36]	\checkmark	[48]	
Young's modulus (GPa)	72 ^[1, 10, 37] 40- 60 ^[14]	140 [37]	140 [37]	290[12]	
Poisson's ratio	0.17 ^[1,10]	0.23 [6]	0.23 [37]	0.28 ^[12]	

J. Franc et al., ET-021-09 (2009)

Values from a *single* experiment: 25-doublets QWL Silica/Titania coating [P. Amico et al., J. Phys. Conf. Ser. 32 (2006) 413]. Thickness of Titania layers was 116nm. Well above limit-thickness for preventing crystallization upon annealing [S. Chao et al., J. Opt. Soc. Am. A16 (1999) 1477]. Reported loss angle most likely due to crystallization.

In the amorphous phase Y_{TiO2} is 160 - 170 Gpa. [T. Modes et al., Surf. Coat. Technol. 200 (2005) 306] Quoted Y = 290 Gpa is OK for the crystalline (Rutile) phase [O. Zywitzki, et al., Surf. Coat. Technol. 180 (2004) 538].

Large spreads among values obtained from different measurement techniques...

Conjectured values - No direct measurements of Y or σ on doped Tantala reported yet.

[I. Pinto et al., LIGO-G1100586]

Silica Doped Titania (SiO₂::TiO₂)

Extinction coefficient, and its absorption

and scattering components, vs Tannealing.

W.H. Wang and S. Chao, Optics Lett., 23 (1998) 1417;

S. Chao, W.H. Wang, M.-Y. Hsu and L.-C. Wang, J. Opt. Soc. Am. A16 (1999) 1477; S. Chao, W.H. Wang and C.C. Lee, Appl. Opt., 40 (2001) 2177;

נו. דווונט פו מו., בוטט-טבבטטסטן

A SiO2//TiO2::SiO2 Coating Prototype

R.P. Netterfield and M. Gross, "Investigation of Ion Beam Sputtered Silica Titania Mixtures for Use in GW Interferometer Optics," Optical Interference Coatings (OIC) Conference, Tucson AZ, USA, 2007, paper Thd2.

SiO₂//TiO₂ nm-Multilayers - Rationale

Use a *sub-wavelength* layer *stack* (SWS) made of two (or more...) different refractive materials to *synthesize* a *high-index*, *low mechanical loss* material.

Expect *larger* n_{eff}, *smaller* b_{eff}, compared to "isotropic" mixture With same stoichiometry;

nm – thick TiO₂ layers should *not* crystallize significantly upon annealing. nm-thick silica layers act as separa-Tors, hopefully preventing Titania from crystallizing

Annealing of TiO2 nm-layers

Modeling nm - Multilayers

Co-sputtered vs nm-layered Silica//Titania

Layered SiO2::TiO2 mixture "bertter" than isotropic mixture at all stoichiometries

Co-sputtered Titania//Tantala vs nm-layered Silica//Titania

Layered SiO2::TiO2 outperforms by large isotropic Ta2O5-TiO2 mixtures

Several alternative sandwich thickness choices possible, yielding the same effective medium properties;

Accuracy in single layer thickness NOT important, provided -Each layer in sandwich is subwavelength, -The thickness fraction of each constituent is accurate;

Possibly *mild* technological challenges: layers a few nm thick are currently manufactured for e.g. X-ray mirrors.

nm-Layered Prototypes

Nano-layer sample #2 TEM pictures

Sample #2

Sample #2 with thickness

close-up view of the layer interfaces

Electron diffraction pattern of the layers (amorphous)

[courtesy S. Chao]

nm-Layered Prototypes

Nano-layer sample #2

[courtesy S. Chao]

Silicon wafer

Chao's Lab, Tsing Hua Univ., Taiwan

Kaufman-type ion beam sputter system in a class 100 clean compartment within a class 10,000 clean room, used to coat low loss mirror for ring-laser gyroscope

Three sets of exchangable target holder, each holding two sputter targets

Sputter target and single axis substrate rotation

Kaufman iongun with plasma bridge neutralizer

[courtesy S. Chao]

Clamped cantilever Q mesurement setup

The Clamped Coated Cantilever

Chao's Q measurements will yield both composite and pure TiO2 loss angle estimates

Cryogenic Peak

• Optimizing Coating Geometry Minimal Noise Dichroic Design

"Naive" Reference Dichroic Design

...this simple argument ignores material dispersion, e.g.

wavelength material	532	670	946	1064	1319	(courtesy
Silica	1.47809	1.47337	1.47044	1.46995	1.46937	IVI.Gross,
Doped Tantala	2.13890	2.10980	2.09570	2.09418	2.09238	CSIRO)

"Naive" Reference Dichroic Design, contd.

Design goal compliant and minimal noise designs (dispersion included)

N₂ N₁	10	11	12	13	14	15	16	17	18	19	20
1	3316,2	1635,3	806,01	397,2	195,72	96,432	47,513	23,409	11,534	5,6826	2,7998
'	0,3621	0,3909	0,41563	0,43632	0,45306	0,46597	0,47517	0,48076	0,48279	0,4813	0,47626
2	2107,8	1039	512,07	252,32	124,33	61,256	30,181	14,87	7,3264	3,6097	1,7785
2	0,61658	0,64006	0,65946	0,67515	0,68746	0,69667	0,70299	0,70657	0,70752	0,70584	0,70149
2	1306,5	643,93	317,31	156,35	77,035	37,955	18,701	9,2136	4,5395	2,2366	1,1019
3	0,79441	0,80856	0,82004	0,82916	0,8362	0,84139	0,84486	0.84675	0,84709	0,84591	0,84316
4	800,48	394,47	194,37	95,771	47,187	23,249	11,45	5,6436	2,7806	1,37	0,67497
4	0,89572	0,90326	0,90932	0,9141	0,91776	0,92043	0,922 <mark></mark> 2	0,92314	0,92326	0,92258	0,92107
5	487,7	240,32	118,41	58,341	28,745	14,162	6,9777	3,4379	1,6938	0,83453	0,41117
5	0,94848	0,95229	0,95534	0,95773	0,95956	0,96089	0,96176	0,96222	0,96226	0,96191	0,96113
6	296,29	145,99	71,932	35,441	17,462	8,6033	4,2388	2,0884	1,029	0,50696	0,24977
Ŭ	0,97487	0,97674	0,97824	0,97942	0,98031	0,98096	0,98139	0,98161	0,98163	0,98145	0,98106
7	179,74	88,56	43,634	21,498	10,592	5,2187	2,5712	1,2668	0,62415	0,30751	0,15151
'	0,98781	0,98873	0,98946	0,99003	0,99046	0,99078	0,99099	0,99109	0,9911	0,99101	0,99082
8	108,94	53,677	26,447	13,03	6,4199	3,163	1,5584	0,76781	0,37829	0,18638	0,09183
0	0,99411	0,99455	0,9949	0,99518	0,99539	0,99554	0,99564	0,99569	0,9957	0,99566	0,99556
0	66,001	32,519	16,022	7,8939	3,8893	1,9162	0,94411	0,46515	0,22918	0,11291	0,055632
9	0,99715	0,99737	0,99754	0,99767	0,99777	0,99785	0,9979	0,99792	0,99792	0,9979	0,99786
10	39,974	19,695	9,7038	4,781	2,3556	1,1606	0,5718	0,28172	0,1388	0,068387	0,033694
10	0,99863	0,99873	0,99881	0,99888	0,99893	0,99896	0,99899	0,999	0,999	0,99899	0,99897

Table 1 – ETM reference "hybrid" SD design. In each cell: ETM power transmission coefficient @1064 nm [ppm] (1st line) and power reflection coefficient @532 nm (2nd line) for different values of N₁ and N₂

[M. Principe and I. Pinto, LIGO-T080337]

"Naive" Reference Dichroic Design, contd.

 $|cap| (|\lambda_0^{(H)}/4|\lambda_0^{(L)}/4|)^{14} (|\lambda_0^{(H)}/8|3\lambda_0^{(L)}/8|)^6 |\lambda_0^{(H)}/8|substrate$

Genetically Engineered Dichroic Design

(50 iterations, 25 cycles, other settings default; layers rescaled modulo $\lambda/2$; layers below 5λ /1000 deleted. 38 layers left.

(... controlled ignorance attitude...)

Neat trend toward a *stacked-doublet core* ...

[I. Pinto et al., LIGO-G0900205]

Simplest SD-Core Dichroic Design

 $|cap|(|d_{H}|d_{L}|)^{N}|d_{H}|substrate$

[I. Pinto et al., LIGO-G0900205]

Isoreflective Contours (N=18)

$$cap \left| \left(\left| d_{H} \right| d_{L} \right) \right|^{18} \left| d_{H} \right| substrate$$

Minimal Noise SD Dichroic Design

Require, e.g., $\tau_p = 5.5$ ppm @ 1064nm and $\Gamma_p = 0.95$ @ 532nm

Minimal Noise SD Design

 $|cap|(|d_{H}|d_{L}|)^{N}|d_{H}|$ substrate

 $\xi_L = 0.02008, \xi_H = 0.029362$ $d_L = 195.493nm, d_H = 112.1nm$ N=18

λ [nm]		
1064	5.5	τ _p [ppm]
532	0.949261	
670	0.0889853	
946	0.994795	Γ
980	0.999955	ſ
1319	0.181319	
1550	0.0347272	

Tweak (adjust) the thicknesses of the *outermost* (first, last) layers, e.g. Let:

$$d_{first}^{(H)} = \frac{\lambda_0}{n_H} \left(\frac{1}{4} - \xi_{first}\right), d_{last}^{(L)} = \frac{\lambda_0}{n_L} \left(\frac{1}{4} + \xi_{last}\right)$$

Keep $\tau_p @1064nm, \ \Gamma_p @532nm$ unchanged

Tweak so that peak electric field at coating face achieves its *infimum*,

$$|E| = |E^{inc}||1 + \Gamma| =$$
$$= |E^{inc}|(1 - |\Gamma|) \cong |E^{inc}|\frac{\tau_p}{2}$$

For our N=18 SD-ETM design, get

$$\xi_{last} = -0.22862, \ \xi_{first} = 0.030761$$

 $d_{last} = 111.389nm, \ d_{first} = 15.4765nm$

$$\left| E_{face} \right| \cong 2.7 \cdot 10^{-6} \left| E^{inc} \right|$$

... additional constraints (e.g., flatness) can be accommodated by tweaking additional (outermost) layers ...

SD-Core, Tweaked Optimal Design

LMA started from this to engineer the current AdvLIGO ETM and ITM coatings. They enforced further band-centering tweaks . Details are covered by secret .

Conclusions

Several tools have been developed in the LVC (and the Scientific Community at large) which may suit the specific mirror noise issue of b-KAGRA, including

-EMT modeling of glassy mixtures

-The idea of nm-layered composites

-A simple systematic procedure for coating thickness optimization