Geophysics Interferometer (GIF)

A. Takamori
A.Araya
(ERI, Univ. of Tokyo)

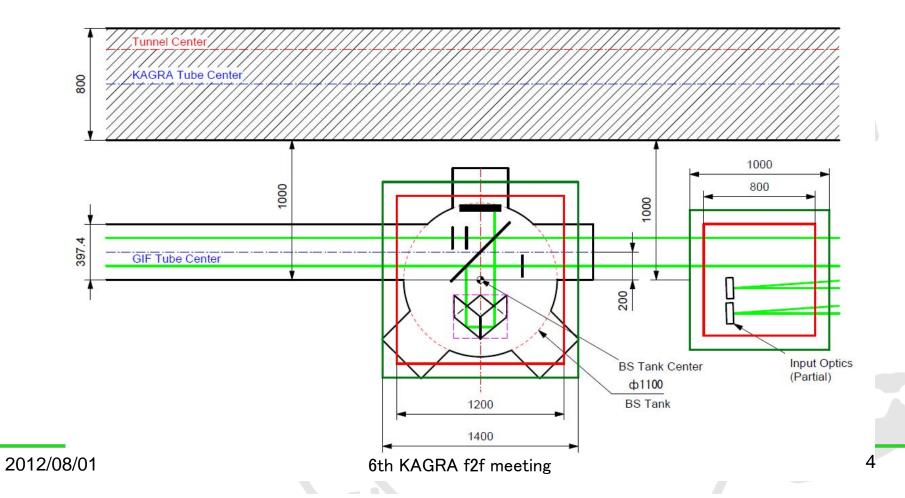
Contents

- Overview & Status Report
 - Project Definition & Scope
 - Layout
 - Environment Monitor
 - Schedule
- □ Topic: Optical Design
 - General Description
 - Interferometric Visibility and its Degradation

Project Overview & Status

Definition and scope

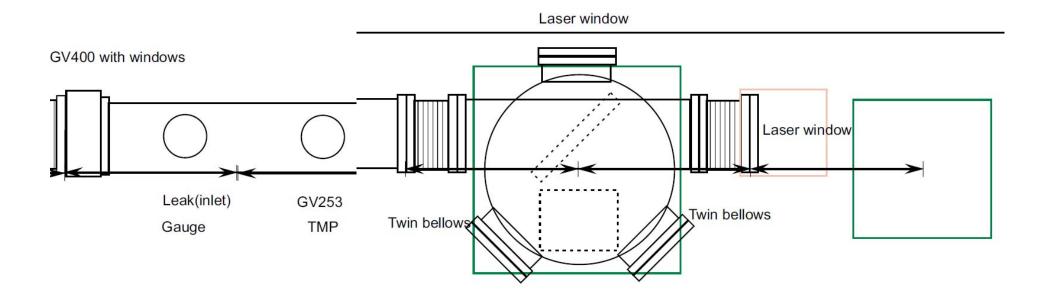
- 1.Construction of two fixed-mirror interferometers (1.5km x 2) along KAGRA, for both geophysical observation and KAGRA baseline monitor.
- 2.Arrangement of sensors and benchmarks for monitoring environment parameters of the tunnel, rooms, and instruments


Current status

- 1. Documents of retro-reflectors and vacuum chambers are being prepared for bids.
- 2. Layout around a vacuum chamber is shown below.
- 3. Sample environment sensors (thermometer, hygrometer, and barometer) are being tested in the CLIO site.

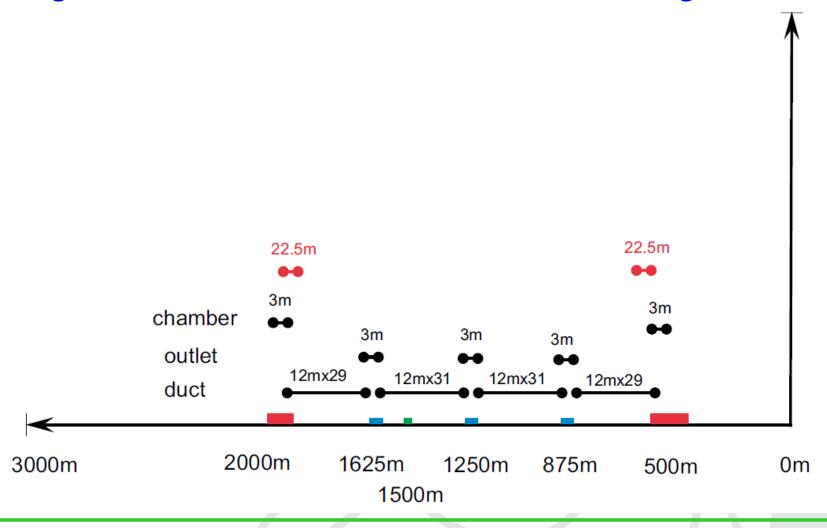
Layout

Optical layout and vacuum chamber


Vacuum chamber (inner dimension): diameter 1100mm, height 1000mm

Layout

Layout around a vacuum chamber


KAGRA duct

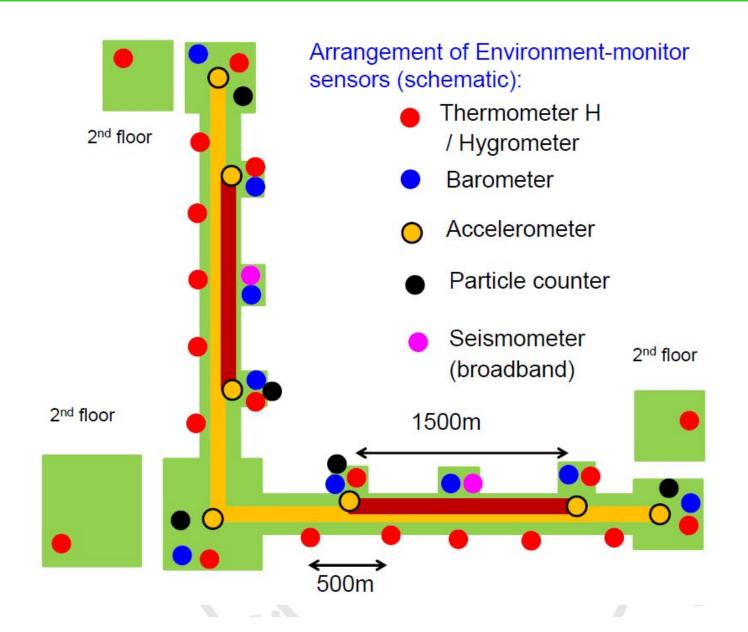
One arrow indicates 1 meter.

Vacuum System

Arrangement of vacuum ducts 22.5m x 2 are lacking for 1500m

Environment Monitor (EM)

Definition & Scopes


Environment condition of the tunnel, rooms, and instruments need to be monitored for ensuring stable operation of detectors, correction of data analyses, and detection of anomalous operation.

Some sensors are directly attached to instruments for monitoring any noises applied to the instruments to assess validity of the data, such as veto analyses.

The sensors are characterized by physical quantity, relative / absolute, dimension, measurement range, resolution, and frequency response.

Sensor Locations

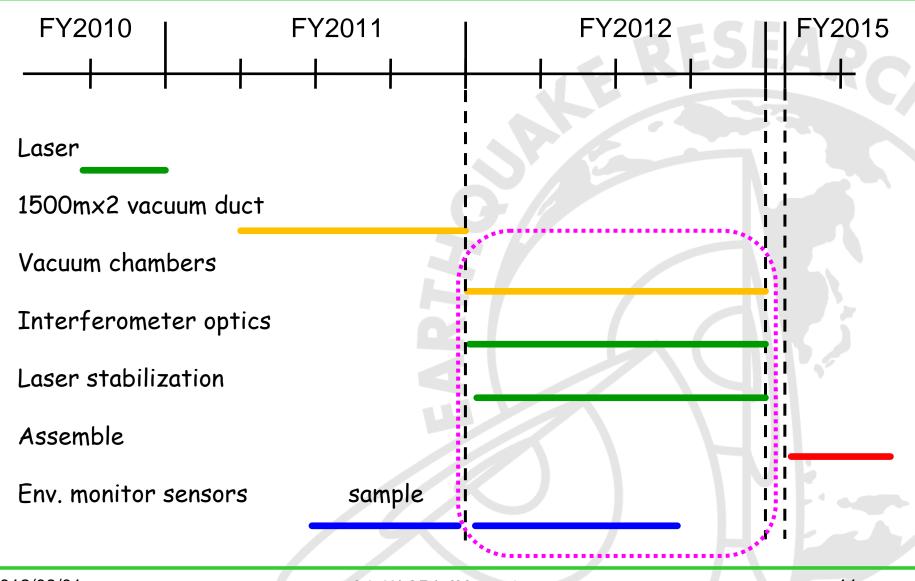
2012/08/0



EM Sensors

	a lr	2adv	y teste	.d _	to	be tes	ted						Y	end Y30	000m
	un	caa _.	y tooto	, G	10		loa					1st flo	or		
Group	Sensor	Rank	Dimension	Symbol	Range	Resolution	Response	Vendor	Room	Floor	Table	TR.y	ETM.y	etm.y	DAG
(Thermo	abs.	300x300x12		-50-50deg	0.15deg	DC-0.1Hz	Yokogawa							
	Hygro	abs.		TH_A_1	0-100%	3%	DC-0.1Hz								
	Thermo	rel.	20x20x300		-50-200deg	0.0001deg	DC-1Hz	Tokyo Dempa							
	hermo	rel.	5x5x5	T_R_2	-55-150deg	0.5deg		Texas Inst.				3	1	1	1
	aro.	abs.	180x180x65		850-1050hPa	0.15hPa	DC-0.1Hz								
	ccel.	abs.	80x80x80	Acc_A_1	20m/s ²	1.e-5m/s ²		•			1	_			
COMMON	ccel.	rel.	15x15x15	Acc_R_1	50m/s ²	1.e-2m/s ²	1-5kHz	Kistler				3	1	1	1
	Velocity	rel.	250x250x25	GSel_R_1	1.3 e- 2m/s	3e-10m/s ² /rH	z 8.3m-50Hz	Streckelsen							
COMMISSION	Velocity	rel.	250x250x30	00Sel_R_2	1.5e-2m/s	1e-10m/s²/rH	z 4m-200Hz	Nanometrics							
	elocity	rel.	200x200x30	00Sel_R_3	1.3e-2m/s	3e-10m/s2/rH	z 3m-50Hz	Guralp							
	Acoustic	rel.	15x15x20	MIC R 1	146dB	14.6dB	6.3-20kHz	Bruel and Kjaer	ł	1					
	Acoustic	rel.	15x15x15	MIC R 2	140dB	19dB	20-20kHz	Ono Sokki							
	Mag.	rel.	25x25x200	Mag_R_1	70-1000uT	6pT/rHz	DC-3kHz	Bartington		1					
	Mag.	rel.	100x100x10			0.1nT	DC-5Hz	Shimadzu							
	article	abs.	150x100x10		0.2-5um	0.2um	NA	MetOne		1					
	Particle	abs.	150x300x30	JuPar_A_2	0.3-5um		10s-2h	RION							
	Baro.	abs.	180x180x65	B A 1	850-1050hPa	0.15hPa	DC-0.1Hz	Yokogawa							
VAC	Particle	abs.	150x100x10		0.2-5um	0.2um	NA	MetOne							
	Thermo	abs.	300x300x12		-50-50deg	0.15deg	DC-0.1Hz	Yokogawa		1					
	+Hygro	abs.		TH_A_1	0-100%	3%	DC-0.1Hz	Yokogawa		1					
	Thermo	rel.	20x20x300		-50-200deg	0.0001deg	DC-1Hz	Tokyo Dempa							
	Thermo	rel.	5x5x5	T_R_2	-55-150deg	0.5deg		Texas Inst.							
	Baro.	abs.	180x180x65		850-1050hPa	0.15hPa		Yokogawa		1					
GIF	Accel.	abs.	80x80x80	Acc_A_1	20m/s ²	1.e-5m/s ²		Japan Avl. Ele.							
	Accel.	rel.	15x15x15	Acc_R_1	50m/s ²	1.e-2m/s ²	1-5kHz	Kistler							
	Velocity		250x250x25		1.3e-2m/s	3e-10m/s ² /rH									
	Velocity	rel.	250x250x30	00Sel_R_2	1.5e-2m/s	1e-10m/s²/rH	z 4m-200Hz	Nanometrics							
	Velocity	rel.	200x200x30	00Sel_R_3	1.3e-2m/s	3e-10m/s2/rH	z 3m-50Hz	Guralp							
	Acoustic		15x15x20	MIc_R_1	146dB	14.6dB		Bruel and Kjaer	1						
	Acoustic		15x15x15	MIC_R_2	140dB	19dB	20-20kHz	Ono Sokki							
	Mag.	rel.	25x25x200			6pT/rHz	DC-3kHz	Bartington							
	Mag.	rel.	100x100x10			0.1nT	DC-5Hz	Shimadzu							
	Particle	abs.	150x100x10		0.2-5um	0.2um	NA	MetOne							
	Particle	abs.	150x300x30	JUPARA 2	0.3-5um		10s-2h	RION	I						

EM Example


Temperature, humidity, and barometric pressure at CLIO

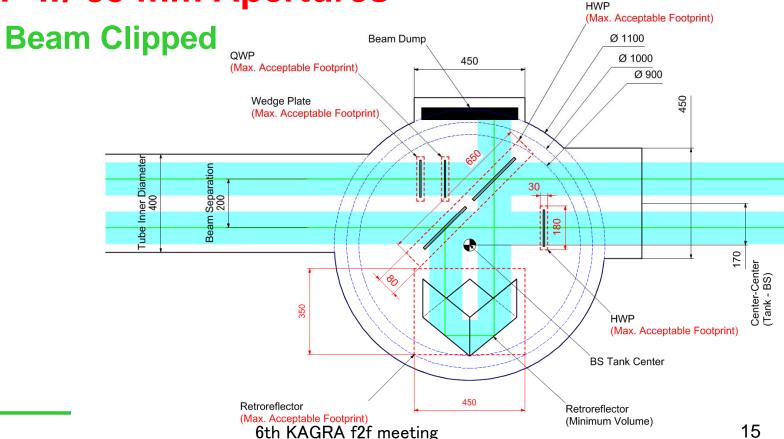
Schedule

GIF Milestones

	related sub-groups
2012.3 vacuum pipes delivery	Vacuum
optics final design	Tunnel
EM sensor determination	Det Char
2012.9 vacuum valves / pumps delivery	Vacuum
infra specification (clean booth, LAN)	Fac. Sup.
2013.3 optical components delivery	
vacuum components delivery	Vacuum
EM sensors delivery	Det Char
(2014.3) tunnel excavated	Tunnel
2014.6 vacuum & granite base installation	Vacuum/ Fac. Sup.
2014.12 vacuum installation	Vacuum
2015.3 optics installation	
EM-DAQ operation	Det Char
2015.6 test observation start	
safety management	Fac. Sup.
2015.9 observation & maintenance	
(2018.3) bKAGRA 2012/08/01 6th KAGRA f2f meeting	
2012/08/01 6th KAGRA f2f meeting	12

GIF Optics Main Features

- □ Asymmetric Michelson Laser Interferometer
 - 1.5 km vs. 50 cm
 - Optics Attached to Bedrock
- □ Iodine-stabilized Nd:YAG Laser
 - $\lambda = 532 \text{ nm}$
 - Stability (Ultimate Resolution): 10⁻¹³
- Quadrature Detection
 - Bi-directional Output
 - Wave Plates Inserted as Retarders
- □ Retroreflectors as End Mirrors
 - No Alignment/Length Control

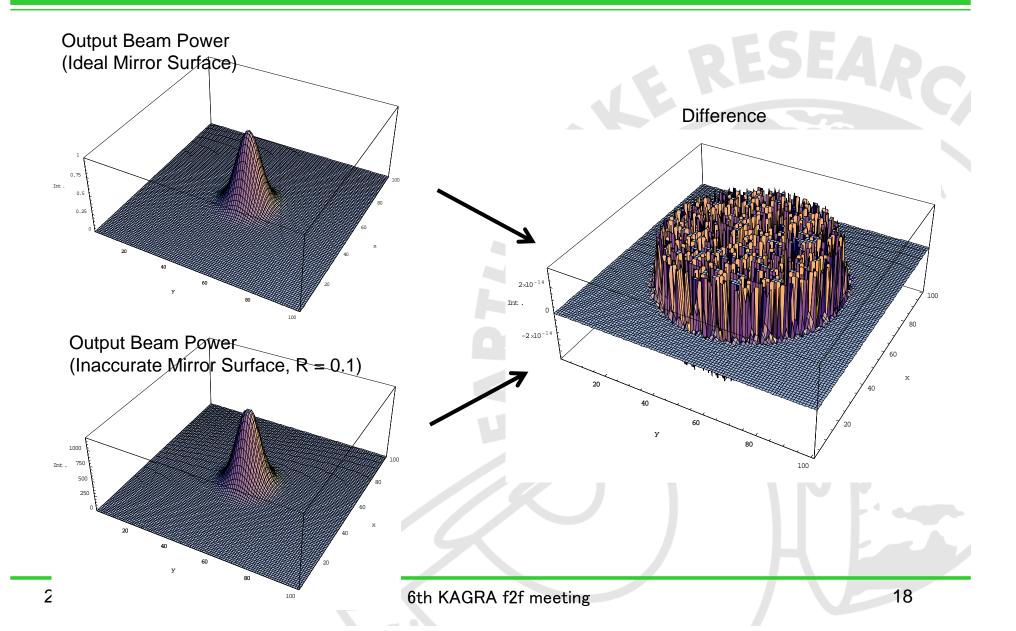

Beam Layout

- □ 200 mm Separation
 - To Fit into 400 mm Vacuum Tube
- Beam Waist at Arm End
 - Minimizes Retroreflector
 - For Better Symmetry (of input & return beams)
 - Minimum Spot Size at BS
 - ♦ Waist Size: 15.9 mm
 - ◆ Spot Size at BS: 22.5 mm
- □ Required Minimum Apertures
 - Retroreflector: 295.7 mm (12 inches)
 - BS: 237 mm per Spot

Optics in Main Tank

- □ 15" Hollow Retroreflector
- BS Separated to 2 pcs.
- WP w/ 85 mm Apertures

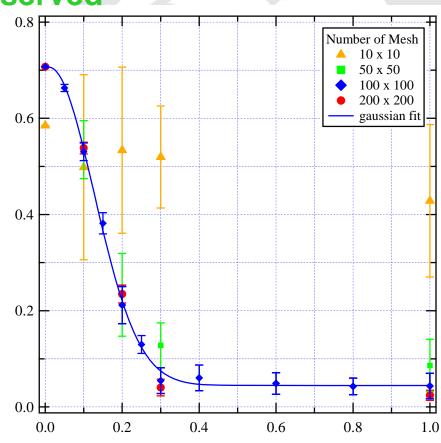
2012/08/01


Visibility

- □ Limited due to IFO Asymmetry
 - Vis = 0.707 (Best w/ Ideal Optics)
- □ Causes of Visibility Degradations
 - Wavefront Distortion
 - **◆** Irregular Surface of Retroreflectors
 - ◆ Non-Parallelism of BS & Wave Plates
 - Power Loss
 - Contamination (Low Reflectivity, Transmissitivity)
 - Clipping at Wave Plates
 - Other Causes
 - Scattering etc.

Surface Accuracy of Retroreflectors

- □ Realistic Numbers
 - A Manufacturer Specification (PLX)
 - 0.3 λ Guaranteed
 - 0.1 λ may be Possible (Best Effort)
- Estimating Visibility Degradation
 - Simple FE Model
 - **♦** Meshing over +/- 100 mm Wavefront
 - 50 x 50, 100 x 100, 200 x 200, 500 x 500 Meshing Tested
 - **♦** Random & Independent Surface Displacement
 - follows Normal Distribution
 - » Average: 0
 - » STD: R x λ (Roughness Factor R = 0.1, 0.2, 0.3, ...)


Model Example

Results

Visibility vs. Surface Inaccuracy

- **Appropriate Mesh Number: 100 x 100**
- **Rapid Degradation Observed**
 - **Up to R~0.3**
- **Expected Visibilities**
 - 0.53 + 0.02 (R=0.1)
 - 0.21 +/- 0.03 (R=0.2)
 - 0.05 +/- 0.03 (R=0.3) in the control of the control
 - cf. 0.71 (R=0)
- **Beam Clipping**
 - **No Significant Impact**

R (Roughness, $x \lambda (633 \text{ nm})$)