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Introduc6on	

In 1980’s there were hot debates on the possibility 
of beating the standard quantum limit among 
Caves, Yuen and Ozawa. 

 I would like to briefly look at the history and convince 
you that the uncertainty principle for the point mass 
is actually irrelevant for the present day LIGO/KAGRA 
type interferometer. 



 Very naively the tiny displacement of mirror ≈ nuclear 
size by an incident GW in the Michelson-type 
interferometer suggests possible relevance of uncertainty 
principle. 
 Caves et al. once claimed that the power spectrum of 
the GW h(t)	

 S(ω):= ∫dt <h(t)h(0)>eiωt  	

is bounded by the standard quantum limit 

SSQL (ω)  ≈ ℏ/mω2L2     (m:mirror mass, L:arm length) 



The reasoning might be the following. 
Let the quantum fluctuation of a point mass(=mirror) 
be Δx(t). Then the uncertainty principle would imply 

<Δx(t) Δx(0)>  ≥ ℏ|t|/m      (#) 

The fake GW by the quantum fluctuation is hfake(t)=Δx(t)/L 
with L being the arm length. We would have 

 S(ω):= ∫dt eiωt<hfake(t)hfake (0)>≥ ∫dt eiωt ℏ|t|/mL2 

                                                                       ≈ ℏ/mω2L2   

The RHS essentially comes from the broadening of 
wave packet for a free particle, 

diffuse	



However, as Yuen observed ,(#) does not hold 
for a “contracting wave packet”. 

contract	

The contracting wave packet can be realized e.g., 
a non-miniimal gaussian wave packet in the harmonic 
potential. Actually it repeats the diffusion and contraction 
periadically.	



If we observe the point mass at the timings of contraction, 
the breadth  Δx(t) will become smaller than the initial one. 

observe x observe x	

Later Ozawa explicitly showed an example of interaction 
Hamiltonian for the measurement which gives zero error 
if the timing is fine tuned. 

Caves et al. Rev.Mod.Phys.52 341(1980) 
Yuen, Phys.Rev.Lett  51 719 (1983) 
Caves, Phys.Rev.Lett  54 2465(1985) 
Ozawa, Phys.Rev.Lett  60 385 (1988)	



The debates in 1980’s concluded that SQL can be 
overcome. 
 Maddox,  Nature 331 559 (1988) 

However, after all the GW is a classical signal. How the 
uncertainty principle is relevant at all? 
 Actually this intuition turned out to be correct. 

Braginsky et al. showed that the initial position and 
momentum of a point mass can be eliminated from 
the data sequence either by filtering or signal recycling. 

Braginsky et al. Phys.Rev.D67 082001(2003) 



2.	  Filtering	
Consider a measurement Hamiltonian,  

H= p2/2m-F(t)x –Σ0
N-1

xPrδ(t-τr) 

Here (x,p) is the position and momentum of a point 
mass. Pr is the  momentum conjugate to the position 
Qr of the r-th detector impulsively coupled to the  
Position of the point mass at time t=τr, r=0,1,2,….N-1. 
 Later we identify (Qr,Pr) with the quadratures of  
the electromagnetic fields in the laser interferometer. 
 F(t) is the external force corresponding to GW. 



The solution for xr(t) just after τr is given by 

xr=x0+rτp0/m+Σ0
r
Ps(r-s) τ/m+ξr 

where ξr is a function of the external force F(t). 
At that time t=τr the detector position Qr is  

Qr=Qr
before-xr 

=Qr
before-x0-rτp0/m-Pr

beforerτ/m-Σ1
r
Ps(r-s) τ/m-ξr 

 Since the terms which contain (x0,p0) are linear 
in r, we can eliminate them by composing a 
filter corresponding to a discrete version of 
the second derivative: Qr+1-2Qr+Qr-1  



Q2=Q2
before-x0-2τp0/m-2Pbeforeτ/m-P1τ/m- ξ2 

Q1=Q1
before-x0-τp0/m-Pbeforeτ/m- ξ1 

Q0=Q0
before-x0- ξ0 

The combination 

Q2-2Q1+Q0=Q2
before-[2Q1

before+P1
beforeτ/m] +Q0

before 

                                       +ξ2-2ξ1+ξ0 

eliminates the initial position x0 and momentum p0.   



For example, 

Q2-2Q1+Q0=Q2
before-[2Q1

before+P1
beforeτ/m] +Q0

before 

                                       +ξ2-2ξ1+ξ0 

If the initial state is chosen as an eigenstate 
of Q2

before and Q0
before and further of 

    2Q1
before+P1

beforeτ/m 

that is, a squeezed state, the data sequence 
Q2-2Q1+Q0 contains only the classical information 
of GW. 



The important point is 

Qr=Qbefore-x0-rτp0/m-Pbeforerτ/m-Σ1
r
Ps(r-s) τ/m-ξr 

are commutable,  

  [Qr ,Qs] = 0     

The contribution from (x0,p0) of the mass point and from (Qbefore,Pbefore) 
of the detector exactly cancel out. 
so that measurement of Qr‘s are compatible. 
Note that 
   [Pr ,Ps] = 0, 
 since Pr=Pbefore.  



In a laser interferometer, the electromagnetic field is the 
detector variable 

  E = Ein+iC(t)x + Σr ….[are
-iωt – a*re

iω] 

The second term comes from the phase shift by the position 
of the mirror. ar and a*r are annihilation and creation 
operators.   

The correspondence to the previous model is 

     Pr              ar+a*r 
     Qr             ar-a*r 	



The actual measurement in the GW interferometer is 
the photon number counting  N(t) or Nr 

They are also commutable, since Nr∝(Pr)2+(Qr) 2
  

so that the measurement of Nr does not disturb the  
subsequent measurements of Ns‘s.   



 It seems  that we can always construct a “filtering” 
to eliminate the initial position and momentum of a point 
mass if the measuring interaction is bilinear as far as 
the detector degrees of freedom (electromagnetic field) 
is much larger than that of the mass point (mirrors). 
 As the other method to eliminate the the initial position and 
 momentum of a point mass, one may use the damping 
of the mode e.g., by signal recycling. 

 This kind of device can evade the uncertainty principle, 
because it only measures the external classical force.  

However, is this the only way?  
We will show a way to beat the SQL by directly measuring Qr  
in what follows.   



3.	  Ozawa’s	  Uncertainty	  Rela6on	

Suppose we do not use the filtering discussed 
in the previous slide but directly measure Qr 

 Is SQL unavoidable? 

I claim that the answer is NO. 
There remains a way to overcome the uncertainty 
relation. 



Ozawa reformulated Heisenberg’s uncertainty principle, on the 
basis of rigorous measurement theory of the Completely 
Positive (CP) map. 

ε(A) η(B) +ε(A)σ(B)+σ (A) η(B)≥|<ψ|[A,B]|ψ>|/2  

where ε(A) is the error in the measurement of A, η(B) is the 
disturbance of B by the measurement of A.  
  σ (A) and σ(B) are the quantum fluctuations of A and B in the 
state |ψ> i.e., the standard deviations. 

            M.Ozawa: Phys.Rev. A67,042105 (2003)        	

Here A=Qr and B=Pr 	



Is it possible for ε(Qr)=0? 
The original Heisenberg’s uncertainty relation 

 ε(Qr) η(Pr) ≥ ℏ/2    (##) 

would imply η(Pr) =∞ and so is η(Nr). 
However, actually (##) is NOT correct.  
Instead we have 

 σ (Qr) η(Pr) ≥ ℏ/2 

The disturbance η(Pr) can be finite!   



4.	  Summary	
 The standard quantum limit　（SQL）can be avoided  
either  by filtering or signal recycling, which eliminate the 
initial position and momentum of a mass point.  
(Braginsky et al.) 

 It is also possible to directly beat SQL choosing the  
initial state and measurement apparatus in principle.  
(Yuen, Ozawa) 

The guide line can be found in Ozawa’s inequality. 

                     Thank you for your attention! 


