Composite mirror suspensions development status and directions

ELiTES activity interim report

JGW-G1201174

The idea

 A fresh approach to the design of low thermal noise mirror suspensions for KAGRA and ET

Key features:

- Composite structure
- Purely Compressive joints
- No shear noise
- No need for bonding
- Easy replacements
- Easily scalable to larger masses

Flexure Key features:

- Silicon flexures
- Intrinsic Q-factor >10⁸
- Thermo-elastic >10⁶
- Diluted Q-factor >10⁹
- Before cryo gain !
- Many Machining options available

Flexure structure

- Ultra-Sound Machined
 structure
- Etching of the flexure surface
- Expected to increase the break point >1GPa

Flexure structure

- Thin, short, etched flexure
- smallflexure aspect ratio
- Large thermal conductance

Chao Shiu laboratory, Taiwan Silicon cantilever with KOH wet etching

4" un-doped double-side polished (001) silicon wafer, 500 μm thickness etched down to 92 and 52 μm

0.3 10⁻⁶ loss measured from residual gas

Thermo-elastic limit

- @ 59 Hz 0.945 10⁻⁶ loss angle predicted (T.E.)
- 1.3 10⁻⁶ measured (-) 0.3 10⁻⁶ residual gas
- 1. 10⁻⁶ loss angle measured
- => 100% Thermoelastic limited ! ! !

04

Kenji's Q-factor measurements

- Measurement on a mirror substrate
- 10⁸ lower limit

Ribbons Key features:

- Compression joint attachment
- Machined-polished Sapphire ribbons
- High quality sapphire
- High quality surface finish (sub-phonon defect size)
- => High thermal conductivity !

Conductance budget

- Preliminary conductance budget from Sakakibara with 1 W load
- Thin ribbon responsible for bulk of loss !!!
- Plenty of space for parametric optimization

Mirror attachment Key features:

- Mini-alcoves (low volume machining)
- Machining before coating deposition
- Minimize substrate induced stress
- Recessed attachment, Low vulnerability
- No bonding shear noise
- No flats, 100% of mirror surfaceavailable

Connections Key features:

- Purely compressive joints
- Sub-µm, Gallium gaskets
 + direct contact
- Complete elimination of stick and slip noise
- Perfect heat conductivity
- Easy replaceability

Springs Key features:

- Silicon springs
- Defects etched away
- Allowable surface stress < 1 GPa (to be confirmed)
- Elimination of vertical suspension thermal noise (necessary due to KAGRA's tunnel tilt)

NIKHEF test

• Produce a number od samples

Etched Silicon cantilever blades

- Etch the bending area
- Leave thick section for clamping and for fiber connection
- With 0.15 Gpa Only limited flexure possible
- With >1GPa large deflection

Larger stresses possible?

- MEM sensors operating at 1.4 GPa, ~ 10 times higher limit!
- Is etching eliminating surface defect and therefore causing the larger strength?
- if YES, large bends possible!
- Lower frequency bounce modes

Key technologies:

- Ultrasound machining of sapphire and silicon
- Magneto-rheological Finishing (QED)
- Silicon etching to eliminate defects

Why Gallium

- Indium proved extremely effective to eliminate friction noise in compression joints (Vladimir Braginsky)
- Melts at relatively high temperature
- May need heating mirror to more than 160°C for disassembly

Indium vs. Gallium

Property	Unit	Indium	Gallium	score
Solid density (near r.t.)	g⋅cm ⁻³	7.31	5.91	
Liquid density @ m.p.	g⋅cm ⁻³	7.02	6.095	
Expansion at melting		1.041	0.9696	G
Melting point	°K	429.7485	302.9146	G
Melting point	°C	156.60	29.77	G
Wetting silicates		Yes	Yes	Х
Boiling point	К	2345	2477	G
Vapor pressure	Ра	1 @ 1196°K 📏	1@1310°K	G
Vapor pressure	Pa	10@1325°K	10@1448°K	G
Elec. resistivity (20 °C)	nΩ·m	83.7	270	
Thermal conductivity	$W \cdot m^{-1} \cdot K^{-1}$	81.8	40.6	Ι
Therm. expansion (25 °C)	$\mu m \cdot m^{-1} \cdot K^{-1}$	23.1	18.0	G
Young's modulus	GPa	11	9.8	Х
Poisson ratio			0.47	
Brinell hardness	MPa	8.83	60	G
Atomic radius	pm	167	135	
Magnetic ordering		diamagnetic	diamagnetic	Х

Violin mode elimination

- Fiber-fed
 Red-shifted
 Fabry-Perot
- Can cool
 violin modes
 to mK level
- Same for
 Parametric
 Instabilities)

What was done

- Discussed Ultra-Sound Machining technology capabilities and limitation with Mack
- Interactively advanced design
- Optimized machining procedures to physics requirements
- Design optimization ongoing

To do list

- Test effective break point
 - Etched not etched
 - doped-not doped
 - Different axis orientation
 - tension

- FE simulation
- GWINC simulations
- Test machining
- Test assembly
- Conductivity
- Q-factors
- Gallium
- •

Development target

- Going from strawman to final design of cryo suspensions for KAGRA mirrors
- NIKHEF volunteered to lead, provide most of parts for this R&D stage, perform tests
- Alessandro Bertolini co-ordinating this R&D
- But of course many contributions are needed
 - Fracture measurements
 - Q-measurements
 - Thermal measurements (UTB?)