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Study Introduction 
 
 

The ultimate purpose of this study is to maximize the Q factor of the flex joint 
design proposed for advanced LIGO, which would minimize the amount of energy 
dissipated per cycle of oscillation of the suspended mirror system. Optimizing the 
configuration of geometry and materials can significantly reduce the dissipated energy of 
a pendulum. Reduction of dissipated energy also equates to reduction in the thermal 
noise. Consideration is given to the duration of the oscillations, τ, which represents the 
time taken to transfer a fraction (1-1/e) of the pendulum’s kinetic energy to the 
surrounding thermal bath. It is assumed that τ is independent of actual energy stored in 
the pendulum. This assumption is then considered at thermal equilibrium, which is the 
point when the kinetic energy of the pendulum has decayed to the standard thermal 
energy, ET=KT, where K is the Boltzman constant and T is the absolute temperature. At 
this point, the pendulum continues to dissipate its kinetic energy into the surrounding 
thermal bath in the same decay time, τ, while maintains the same average thermal energy, 
KT by randomly receiving excitations from the thermal bath. Each oscillation then gives 
to, and receives from, the thermal bath an amount of energy equivalent to KT/τ at a 
continuously and randomly shifting phase. It can then be explained that if the decay time 
is large, the thermal energy exchanged per unit time, KT/τ, is small. When Q factor, 
which is inversely proportional to the decay time τ, is large the thermal noise is small.   

  Thus, through the application of basic pendulum physics, it was decided to 
attempt to optimize the Q factor by using different flex joint material, mono-crystalline 
silicon. For experimental purposes, a control material, maraging steel (AISI 250), and a 
test material, mono-crystalline silicon, were chosen. Mono-crystalline silicon is a very 
stiff material and has been found to have an extremely high Q factor. However, the high 
Q factor indicates that there is little to no relaxation process within the material; this fact 
also accounts for its extreme fragility. 
 One key concern in this study is the strain energy of the flex joints, which is due 
to the elasticity of the flex joint material strained in the course of pendulum motion. An 
approximation for the strain energy was used in this study where the strain energy in a 
flex joint is given by Es=kα2. Here, k represents the angular stiffness of the flex joint, and 
α is the angle of flexure (which is assumed quite small to avoid non linear effects that 
occur at large flexure angles). The focus can now be shifted to ΔET which is the 
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where ET is the total energy of the pendulum system, and Qmat represents the Q factor for 
the given flex joint material. It is now obvious that when Qmat is maximized, the energy 
lost per cycle is minimized. Finally, by reducing the energy loss in the pendulum systems 
that suspend the LIGO mirrors, the amount of thermal noise decreases, and the sensitivity 
for the interferometer at low frequencies can increase.  
 
 
Test System 
 

The experimental setup consisted of a roughly 1 kg (1164 g) test mass made of 
brass and stainless steel suspended from a double pendulum system. The double 
pendulum consisted of a flex joint suspended in series with a second flex joint and finally 
attached to a fixed plane.  

 
   Fig. 1. Schematic of flex joint (dimensions in millimeters). 
     
 
A small intermediate mass, roughly 10 g, mounted between the two flex joints was useful 
in providing an oscillation mode at a lower resonant frequency. This intermediate mass, 
made from stainless steel, was also used in excitation of the double pendulum system by 
taking advantage of its stray magnetic properties. A function generator driven, modified 
ferrite choke, was mounted in close proximity of the intermediate mass where it induced 
a force that oscillated the intermediate mass at a desired frequency. It was found in 
testing that the effective distance of actuation between the choke and the intermediate 
mass was roughly proportional to the diameter of the head of the ferrite choke.  

The relative movement of the entire pendulum system was measured by means of 
a shadow meter placed at various positions on the intermediate mass, which was recorded 
by both an oscilloscope and a spectrum analyzer. The shadow meter applied in this study 
was quite simple and consisted of small, low power laser that was directed by a gimbal 
mirror across one of the edges of the intermediate mass and finally into a photo-diode 
detector. 

It is important to note the high sensitivity of this shadow meter system; the results 
were essentially distorted beyond recognition simply from people walking by the lab. For 
this reason, an eddy current dampener was utilized in the experimental setup to damp the 
overall pendulum motion of the test mass, thus reducing this unwanted effect. It is 
therefore also important to note that tests were made to prove that the eddy current 



 3 

dampener did not alter the experimental ring down and ring up times. This was tested by 
running the ring down test with full, half, and no eddy current dampener under the setup, 
and will briefly discussed at a later time in this study. At the tested resonance, the 
movement of the test mass was negligible because the frequency was significantly higher 
than the pendulum modes of the test mass. Therefore, the damper was left in the system 
during testing because it merely cleaned up the output data from the higher frequency 
resonance tests.  This may not be true for extremely high Q values, but was acceptable in 
all our measurements.  The experimental system was further isolated from external, 
unintentional excitation by placing the whole system on a sturdy optical table that 
weighed in excess of one ton placed on rubber, shock absorbing feet.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    Fig.2 Test setup. 
 
 
 
Eddy Current Dampener 
 

As stated previously, an eddy current dampener system was employed on the 
basis that the un-dampened output signal was, at times, distorted significantly due to 
various movements within the laboratory. The eddy current dampener consisted of a grid 
with evenly spaced strong magnets placed about a 1 cm below the test mass.  
 The eddy current dampener did not in any way affect the lifetime of the 
oscillations; rather it only cleaned up the output signal by isolating the desired frequency. 
Moreover, it can be mathematically proven that the dampener has no effect on the 
measured q factor values by calculating the summation of the losses in the three 
measurements (the three measurements refer the various configurations of the different 
flex joint materials which will be discussed later). This calculation can be seen in the 
Study Results section of the paper. Nevertheless, it has been determined that, in fact, the 
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eddy current dampener had no impact on the collected data; the dampener only cleaned 
up the signal from low frequency disturbances.  
 
Material Selection  
 

Before the experiment and results are discussed, the material selection must be 
commented on. The initial experiments were completed with maraging steel (AISI 250) 
flex joints, which existed as the control and learning group. This material, although 
relatively stiff for steel, proved to be very forgiving during the initial experiments. A 
general test mass loading procedure was developed with maraging steel. Since the 
purpose of the study was to maximize the Q factor, mono-crystalline silicon was chosen 
as the flex joint test material because of its increased stiffness and lower losses. As a brief 
comparison, maraging steel (AISI 250) has an ultimate tensile strength of 965 MPa, while 
the value for mono crystalline silicon is in the range of 4-10 GPa [1,2]. However, it 
should be noted that mono-crystalline silicon is extremely fragile in comparison with 
maraging steel, and must be treated accordingly in any mechanical applications such as 
this study. The test load used in this experiment was roughly 1 kg (1164 g) and it was 
found that the mono-crystalline silicon could hold the test mass quite well, but any slight 
movement in the loading process would be detrimental. 
 
 
Resonance Determination  
      
 The purpose of the first experimental test was to determine the numerous 
resonance frequencies and their corresponding movements for the various vibrational 
modes. Resonance frequencies are used in this study due to the fact that the ratio of the 
response over the excitation is the highest at resonance, which makes accurate 
measurements possible with much less effort. This test was quite simple and only 
involved the shadow meter and the spectrum analyzer. The test mass was suspended from 
the double pendulum configuration with the stainless steel 10g intermediate weight found 
between the two flex joints and was manually excited roughly every 5 seconds by 
percussion of the stand. No eddy current dampeners or response filters were used because 
it was desired to observe all resonance peaks from the readout of the spectrum analyzer.  
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Fig.3 Equipment Configuration for resonance peak determination. 

 
 
The desired output reading from the spectrum analyzer was frequency in Hertz for the x-
axis and response in dbV peak to peak for the y-axis. The frequency span used was 
generally from 10 Hz to 1.5 kHz since the lower frequencies, those of the load pendulum 
modes, were not the main concern.  
 The next step in this process was to investigate each peak from the spectrum 
analyzer output in order to determine which resonance frequency represented which 
vibrational mode that were relevant to this study. There are a number of ways to discern 
the vibrational mode of the given resonance frequencies. First, either a function generator 
or the spectrum analyzer could be used to vibrate the hanging system at the frequency of 
interest. As the system vibrates in resonance, a laser could be shined onto small mirrors 
attached to the intermediate mass. The reflected light movement would then be one way 
to determine the mode of vibration by discerning between translational and rotational 
movement. Second, by exciting the system at the given frequency, once again, the 
shadow meter could be placed at various places on both the intermediate mass and the 
test mass. From this method, the vibrational modes could be identified by noting the 
response phase with respect to excitation force. It should be noted that this test was 
successful for the specific vibrational mode considered in this study. The chosen mode of 
vibration was a trans-axial movement as seen in the figure below. 
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Fig. 4 ANSYS representation of trans-axial mode of vibration. 
 
 
This test identified this mode by observing that placement of the shadow meter at 
opposite ends on the same side of the intermediate mass gave identical outputs, however 
they were 180 degrees out of phase. Furthermore, if the shadow meter was placed at the 
middle of the intermediate mass, no output signal was observed. In addition to the 
previously mentioned tests, a finite element analysis with ANSYS was used to model the 
system. Through such a program, a model could suggest possible vibrational modes 
found in the system. This method will be discussed later. 
 
 
Lorentzian Test 
      

The second test used in this study actually proved to be fatal for the mono-
crystalline silicon flex joints, but it was used with the maraging steel and it is important 
to discuss it regardless. Once the appropriate resonance frequency has been determined 
from the first test, a different experiment was run in order to attempt to determine the 
relative Q factor for the given material. This was done by sweeping up the excitation 
frequency and using the Fourier transform mode on the spectrum analyzer to span the 
system excitation over a given frequency range.  
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   Fig. 5 Equipment configuration for Lorentzian test. 
 
 
The range was chosen as 1 to 2 Hz above and below the given resonance frequency. The 
output scale was the same as in test 1. The data was fitted to a Lorentzian function to 
determine the Q factor. One way to determine the Q factor in this manner is to look at the 
peak width at the points of inflection on either side of the output peak. Here, Q is given 
by Q=ƒo/Δƒ, where ƒo is the resonance frequency, and Δƒ is the peak width at the points 
of inflection on either side of the output peak. 
 
 
 
 
 
 
 
 
    
 
 
 
 
Fig.6 Theoretical response of the Lorentzian test. 
 
 
Taking the second derivative of the Lorenzian function with respect to the frequency and 

setting it equal to zero was the method of calculating the points of inflection. The 
Lorentzian function and the second derivative in respect to frequency of the function are 

given by the following equations respectively, 
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Here, x stands for the frequency, xo is the resonance frequency, and Γ is a parameter that 
specifies the width of the peak [3]. 
 This analysis method was utilized for the system with both maraging steel flex 
joints. The experimental data was fit with a general Lorentzian function with an R value 
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of .9851. Thus, this Lorentzian fit gives a Q factor for the system with both maraging flex 
joints of roughly 300. The following graph displays the fitted experimental data.  
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Fig. 7 Lorentzian fitted data. 

 
It is important to note that this test was not successfully completed with silicon 

because the mono-crystalline silicon flex joints experienced catastrophic failure during 
each trial. The flex joints were invariably found to fail from excessive excitation 
amplitude before even reaching the desired resonance frequency. Experimental evidence 
of this failure is depicted in the following figure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8 Catastrophic failure of mono-crystalline silicon flex joint in testing. 
 
Note from RD:   the failure happened in all available flexures during the frequency 
scanning, when the frequency reached the resonance and rung it up to large amplitude. 
In my absence the very enthusiastic students did not realize the trivial reason of the 
breakdown and, u fortunately destroyed all samples. 
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Ring Down Test 
 
 The most useful results collected in the study, which will of course be discussed 
in the results section, came from the ringdown test. This test employed a similar setup to 
the Lorentzian test, but instead of exciting the system over a range of frequencies, the 
system was only excited close to the resonance frequency. A rough drawing of the setup 
is depicted below. 

             
Fig. 9 Equipment configuration for ring down test. 
 
 
To obtain the ringdown, the system is excited by the ferrite choke until it reaches a steady 
output reading, and then the excitation is suddenly switched off to observe the decreasing 
output from excitation to rest [4]. The output was read by a digital oscilloscope where the 
exact decay time could be saved and later analyzed. The output data was either fitted to a 
dampened sine function by independently fitting the sinusoid resonant frequency and the 
envelope of the decaying oscillation, or performing a complete damped sine fit.   
 
 
 
 
 
 
 
 
 
 
 
 
    

 
 
Fig. 10 Explanation of ringdown test. 

    
 
The ringdown data is fit in the following manner. The ringdown data is first centered to 
zero by subtracting the average value from the data, then the time is shifted to a point 
where the ringdown begins at t=0. Noise was observed with a significantly higher 
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oscillation frequency. The data was then smoothed by a function found in the plotting 
software that calculates a moving average of a set of data. This function is set specifically 
by choosing the number of data points around each point to be averaged. This number of 
points was chosen, for the case of this study, to be the number of recorded data points in 
one cycle of noise oscillation. After centering, averaging, and smoothing, the data was 

fitted with the equation, asin 2! " +#( )
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represents the phase, τ represents the decay time, and T represents the period. The Q 
factor was then given by the equation, Q=π(τ/T).  
  
 
Analytical Quantification with ANSYS 
 
 A large amount of time was spent in an attempt to reproduce and quantify the 
experimental results through a finite element analysis using ANSYS. Unfortunately, the 
results from such efforts were not very useful due to several reasons. Regardless, it is 
important to comment on the attempted procedure for this type of analysis, since under 
normal circumstances, a finite element analysis is a viable method of quantifying 
experimental results in a mechanical and materials analysis such as this study.  

The experimental setup was drawn up using Solidworks. Both a 2 – D and 3 – D 
model were made. ANSYS Workbench was initially used, however, it never returned 
reasonable results. The initial meshing used was a rough, even, tetrahedral automatic 
mesh, which returned the result of a frequency mode that, apparently, perfectly described 
the vibrational mode we were looking for. ANSYS, however, returned a resonance 
frequency of 19.55, though we know from experiment that the actual value for the 
resonance to be 164.44 Hz for maraging steel, and slightly higher when silicon is brought 
into play. Then the focus moved on to a quadrilateral mesh with refining along the edges. 
However, this only returned rotations of the intermediate mass. Not only the flex joints 
would not be physically able to handle the sort of stress implied by such a situation, but 
the frequency was either 0 or 5 Hz, another nonsensical result. 
 Many modifications of the mesh resulted with unacceptable results. Finally, the 
decision was made to attempt the 2D simulation of the model. Again, with Solidworks 
and ANSYS Workbench, simulations were run and failed. The key find was that ANSYS 
Workbench does not use the element types needed to properly represent the simulation. 
ANSYS Workbench has use of only the elements SOLID87, 90, 92, 95, 186, 187, 
SHELL 57 and 181, TARGE170, CONTA174, PRETS179, and BEAM188. However, 
from previous flex joint work the element PLANE183 was needed for correct flex joint 
simulation. Thus, the simulation was switched over to ANSYS classic. Both a two 
dimensional and three dimensional model were attempted, however, to this point there 
has not been success with the simulation. 
 The main issue that seemed to be throwing a wrench in this situation is that the 
finite element analysis seems to have trouble when there are two hugely varying 
dimensions in one model. The flex joints hold an intermediate mass that is around 1 cm X 
1cm X 1cm, and the load mass below that is around 5 cm X 5 cm X 5 cm. The flex joints 
themselves are around .56 millimeters thick, 7 mm long, and 2 millimeters wide. This is 
an enormous difference in proportion that ANSYS is having trouble with compensating 
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for. Also, the mesh is probably not exactly refined the way it needs to be in order to give 
a good simulation as well. There may need to be a change in elements as the elements 
move from the flex joint to the other masses, in addition to more refining of the flex joint. 
 
System Configurations 
 
 Due to the fact that mono-crystalline silicon is extremely fragile, maraging steel 
flex joints were used through the development of the test mass loading procedure. It was 
then attempted to replace the maraging flex joints with silicon one at a time. The first 
configuration used maraging steel for both the top and bottom flex joint material, and will 
be referred to as the mar-mar configuration. The next configuration used mono-
crystalline silicon in the upper flex joint position, and maraging steel in the lower, and 
will be referred to as the sil-mar configuration. The last successful configuration used 
maraging steel in the upper flex joint position, and mono-crystalline silicon in the lower, 
and will be referred to as the mar-sil configuration. A sil-sil configuration with mono-
crystalline silicon flex joints in both positions was attempted, but never successfully 
tested. This was due, of course, to the fragile nature of the material. It is important to note 
that the three configurations mentioned demonstrated, although without quantitative 
results, the better quality of the silicon joints.  
 
Study Results 
 
 The ring down test was used as the primary method of material analysis. This test 
qualitatively confirmed the results anticipated before the study. It has been found that the 
Q factor was 383 for the mar-mar configuration, 584 for the sil-mar configuration, and 
1159 for the mar-sil configuration. The results from the sil-mar configuration indicate a 
1.5 times reduction of the amount of energy dissipated per oscillation in comparison with 
the mar-mar results. The mar-sil configuration showed a 3 times reduction in the energy 
dissipation per oscillation, in comparison with the mar-mar results. Such results can be 
quantified by taking into account the definition of the energy loss per oscillation of the 
system and analyzing the respective values of stored mechanical energy from the top and 
lower flex joints. This stored mechanical energy in an elastic angular oscillator is given 
by:  
 

The second equation included above takes into account the fact that the energy loss per 
oscillation of each flex joint must be added together for the total energy losses per 
oscillation. Thus, by neglecting the losses of the silicon flex joints, and by imputing the 
experimental results in respect to the different α constants in the two flex joints in the 
previous equations, and converting them to simple ratios relative to each other, the 
summation of reduced energy losses of the two systems that have one silicon flex joint 
and one maraging flex joint is equivalent to the same amount of energy dissipated by the 
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system with two maraging flex joints. The measured data agree with the relationship that 
is displayed below. 
 
Emar-mar=Emar-sil+Esil-mar 
Emar-mar=1 , Emar-sil+Esil-mar=2/3 +1/3 
 
We can then conclude through experimental data that 2/3 of the energy is stored and 
dissipated in the lower flex joint while only 1/3 of the energy is dissipated in the upper 
flex joint and that the losses in silicon can be neglected when compared to those in 
Maraging. 
 

This does not lead to any new conclusions for the mono-crystalline silicon 
because it was previously known that silicon has a significantly higher quality factor. 
However, it leads to an expectation in future studies, that by replacing both flex joints 
with silicon there will be a much greater reduction in the total energy loss from vibrations 
in the LIGO mirror suspension systems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 11 Ring down graph for each test configuration respectively. 
 
 

The observed difference in the amount of improvement for the two configurations 
suggests that more energy is normally being dissipated from the bottom flex joint than 
from the top. This observation was a driving force for the ANSYS simulations.  Although 
ANSYS never gave reasonable resonant frequencies, the proper vibrational mode shape 
was found in simulation with greater angles of rotation found among the bottom flex joint 
than among the top flex joint.  

This conclusion can be understood through the equation for the approximation of 
the energy loss per oscillation, Error! Not a valid embedded object., given earlier in the 
paper. Since the energy loss is proportional to the stored energy, which in turn is 
proportional to the square of the rotation angle α, the increased rotation angles in the 
bottom flex joint qualitatively explains why there is more reduction of the energy loss 
when the mono-crystalline silicon flex joint was placed in the bottom position.  
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Observed silicon crystal property 

 
 In the course of this study, an unexpected, yet interesting and important effect was 
observed in the mono-crystalline silicon flex joints. Two different batches of flex joints 
were used in this study.  The tests showed that most of the flex joints from one batch 
functioned well for the tests, while all of the flex joints from the second batch underwent 
catastrophic failure instantly or within a second or two after being loaded with the test 
mass.  This phenomenon does not appear to be due to loading error, because the joints 
from the first batch all worked successfully by holding the given test mass for a 
significant period of time while joints from the second batch failed instantly. A tentative 
explanation can now be made. It is known that this material is a fragile, stiff body 
centered cubic material. However, our results show that assumed isotropic elasticity 
might not be a valid assumption. It is also known that all of the flex joints were produced 
in an identical manner, at the same time, but the two batches come from two different 
circular wafers, each of random angular orientation.  It is likely that the cut of the two 
batches had different angles with respect to the crystal axis. Thus, we make the 
hypothesis that the fragility of this material is directional and that tests must be made 
while taking into account the inherent material direction. This conclusion seems to be an 
important consideration for future studies with mono-crystalline silicon flex joints. 
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