
  Left figure is suspension noise and right is spectrum. Spectrum of just locked(red)  
decayed to one of after 10 minutes(green). Noise include from 1st to 7th violin mode.
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  We often generate time series signal which consists of noise and gravitational wave for the 
interferometer using FFT/IFFT. However, since FFT/IFFT method treat the data with finite time chunks, 
it is not good to use for the study of continuous processing of signals across long duration over the 
chunks. Moreover these generated noises will not joint smoothly to neighbor chunks. To mimic the 
realistic raw data taking and calibration process, we would like to generate seamless time series data. 
  We try to generate seamless gaussian noise to interface transfer function with white gaussian noise 
in time region. Where, transfer function is interferometer sensitivity written in complex frequencies. In 
this calculation we use Laplace transform and matrix operation. About another noises (thermal noise, 
line noise etc) we can generate time series directly considering Q-value, repetition of excitation. We 
will display these methods in detail and show result of simulation.

  We get colored noise x(t) on time series by convolution of white 
noise w(t) and impulse response g(t).

１）Suspension noise (violin mode)

  Interferometerʼs noise is linear sum of shown noises. All type of noises generated without IFFT, so we can use
noise datas without regard to seam. Also to memorize initial parameter of generating routine and data length of
generated, we can generate continuation of previous time.
  Following figures are generated total noises include quantum, suspension, thermal, spike, line noise. The left is
time series and center is spectrum of just lock interferometer(red), 10 minutes after from lock and 100 minutes 
after from lock. 
  Right figure is 100 times average of spectrum of generated noise.
  These noises allow KAGRA spectrum and mimic to decay excitation of suspension wire.

Summary
・We showed seamless simulation noise allowed KAGRA spectrum.
・These noise includes gaussian-stationary, quasi-stationary and non-stationary noises.
・We modeled quasi-stationary and non-stationary noises with TAMA signals. 

Future work
・To generate Interferometerʼs row data from KAGRA spectrum noise.
・To read out generated noises in frame format to use analysis simulation.
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  In fourier region colored spectrum Sx(w) written in scalar product
of white spectrum Sw(w) and transfer function G(w)

  We required two conditions of transfer function, and operating
transfer function to white noise [1][2].
1) Transfer function written in idempotent of integer of
     complex frequencies s.
2) When s → ±∞, G(s) → 0.

  Time Series x(t) can be written with differential operator.
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  When Interferometer locked, suspension wires excited. And 
these wires excited all of the time by thermal.
  One excitation depend on Q-value of wires, peak frequency w0 
and initial phase φini. A is amplitude.

x(t) = Ae−
ω0t
2Q sin(ω0t + φini)

  Excitation at lock of interferometer is generated with this equation
where amplitude and initial phase are given a random number.
  At this time lock timing match in onset generating noises.

 2D. Line noise 

  If We generate Excitation by thermal in same method, calculation
cost becomes very expensive. So We add in Brownian motion.
  Thermal noise x(t) change complex signals X(t), Y(t), Z(t).
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  Line noise is sine curve fluctuating frequency. At KAMIOKA center
frequency is 60 Hz. This noises are given assuming that frequency 
is constant during sampling interval δt.

  Z(t) moves δZ(t) during sampling interval, where δZ(t) is rayleigh
distribution. 
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  The first we make up vector z(t), vector f(t) and matrix A to 
compute φ(t) [3].
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  Next using φ(t) solved from differential equation, We compute
noise signal x(t).
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  where σ^2 is variance of gaussian distribution (Re[δZ], Im[δZ]).
Prayleigh(δZ) =

δZ

σ2
e−

δZ2

2σ2

= µ2
rayleigh + σ2

rayleigh

< δZ2 >=< δZ >2 +σ2
δZ

=
π

2
σ2 +

4− π

2
σ2

σ2 =
< δZ2 >

2
  Expectation of Brownian motion is written in sampling interval δt.

Seamless time series generator for KAGRA noise
 and GW numerical simulation

  We suppose frequencies of Harmonics signals depend on freque-
ncies of fundamental wave.

 2C. Non-stationary noise 
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  We modeled one spike noise following equation.

  where kB is Boltzmann constant and T is absolute temperature.
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  To compute this differential equation, we can calculate φ(t).
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  Two time series are seamy data when we generate with IFFT

  where A is amplitude and φ(t) is phase of signal.
  Advance of phase per δt is calculated with following formula.

  

ω(t) = 2πf(t)
f(t) is random number around 60Hz

  e.g) 2 time wave

  Left figure is generated time series and right is 100 times average of spectrum.
We see generated spectrum(red) is along shot noise(blue) and radiation 
pressure(green) curve.
  We checked gaussianity of generated noise with Kolomogrov-Smirnov test and
Anderson-Darling test [4].
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Left figure is time series of line noise and right is spectrum
 with Quantum noise curve(green).

Today this noise include fundamental, 2 time and 3time wave.
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  where A is amplitude, t0 is start of spike signal, τ is damping
time constant and f0 is typical frequency.
  τ0 and f0 are given base on TAMA data. τ0 is similar to 0.6 
msec and f0 is similar to 1300Hz

  Interval of two spike signals allowed exponential distribution.
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Spike

  Left figure is TAMA spike noise of which f0 similar to 1300Hz. 
Right is generated spike consulting parameter of noise of TAMA.

  These figures are time series of thermal noise(left) 
and 100 times average of spectrum of one(right).
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  T is expected value of signal interval in our simulation.
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