

Multivariate Classification of Noise Artifacts using Auxiliary Channels - Artificial Neural Networks

SangHoon Oh (NIMS) on behalf of AuxMVC Group in KGWG

Second Korea-Japan Workshop on KAGRA May 28, 2012

Multivariate Classification of Noise Artifacts using Auxiliary Channels - Artificial Neural Networks

SangHoon Oh (NIMS) on behalf of AuxMVC Group in KGWG

Second Korea-Japan Workshop on KAGRA May 28, 2012

KAGRA People

- Faculties
 - Sang Hoon Oh (呉尚勲, NIMS)
 - John J. Oh (呉廷根, NIMS)
 - Chang-Hwan Lee (Pusan Nat'l Univ.)
- Research Fellow
 - Edwin J. Son (孫 在主,NIMS)
- Grad student
 - Young-Min Kim (金 永敏, NIMS, Pusan Nat'l Univ.)

Distribution of strain noise amplitude for H1

- Automate process of glitch identification
 - machine learning algorithms
 - O(10³) of auxiliary channels
- Develop monitoring tools
 - detector characterization
 - feedback to instrumental scientists
 - exploration of important channels in glitch identification

-3

-4└ -0.5

• initial LIGO ~1,000 aux channels

advanced LIGO ~10,000 aux channles

0.5

0

Time [seconds]

Magnetometer channel

Power line glitch (noise transient)

Amplitud€

-3└ -0.5

1024

512

256

128

64

32-

16 8

-0.5

٥

Frequency [Hz]

KAGRA Auxiliary Channel

GW channel

loud glitches

		DARM (GW ch.)
PEM,IOO,LSC, SUS,TCS,ASC	dt dt	Aux. I Aux. 2 E Aux. n
signal (=glitch)	clean	 (a) cluster significance of loudest trigger within +/-100ms, or significance of nearest trigger if none exists (significance is related to the SNR) (b) dt between DARM trigger and AUX trigger in (a)

random time

Input Variables

KAGRA

(e) npts (cluster size) of AUX trigger in (a)

KAGRA

Machine Learning Algorithms

- Algorithms that allow computers to evolve behaviors based on empirical data, such as from sensor data or database.
- Automatic learning to recognize complex patterns and make intelligent decision based on data

(from wikipedia)

Stanford online ML Class

Machine Learning Algorithms

- Algorithms that allow computers to evolve behaviors based on empirical data, such as from sensor data or database.
- Automatic learning to recognize complex patterns and make intelligent decision based on data

(from wikipedia)

Stanford online ML Class

Machine Learning Algorithms

- Algorithms that allow computers to evolve behaviors based on empirical data, such as from sensor data or database.
- Automatic learning to recognize complex patterns and make intelligent decision based on data

(from wikipedia)

Stanford online ML Class

Artificial Neural Networks

Leading-edge Research Infrastructure Program Large-scale Cryogenic Gravitational Wave Telescope Project

Preliminary Performance

KACRA

Monday, May 28,

Leading-edge Research Infrastructure Program Large-scale Cryogenic Gravitational Wave Telescope Project

Preliminary Performance

KACRA

Monday, May 28,

Important Channels

Significant Factor (SF)

Indicate an quantitative importance of an input variable (x_i) to give an output (Y)

 $\frac{1}{2}$ In ANN, total summation of all connection weights(red lines) connected to a given input variable(x_i) is considered as SF.

$$S(i) = \Sigma_M |(w(i, l_1)w(l_1, l_2)....w(l_{M-1}, l_M)w(l_M, o))|$$

$$\Sigma_M = \Sigma_{l_1=1}^{L_1} \Sigma_{l_2=1}^{L_2}....\Sigma_{l_{M-1}=1}^{L_{M-1}}$$

The larger SF indicates the stronger association with noise artifacts in GW channel.

L1_ASC/WPS2_P_8_256+75539 9142881

LT_ASC-QPDY_Y_8_128+636632104693

LT_SILETPOX_Y_8_128+61582.3380791

LT ASC WISE OF # 254+73135 (#H017#

L1_OPIC-DUOTONE_OUT_DAQ_1024_40%44%35.8853255

LI SUSJETHY SINGOR SOL & DAHARDR 2041474

LI ONC OPDI F OUT DAG # 1834

LI OHC OPDI F OUT DAG & 1034

LE PEH-HAPE ACCZ # 1824

LT ASCIMPST OP # 254

LE PEH-EY_MAGK_1_1014

LE PEN-DEA MAGY 1 1034

Genetic Algorithm

Outlook

 Optimization / Machine learning (loosely) based on biological evolution; *natural selection of* genes

Search global optimum

- Artificial Neural Networks (ANNs) has been applied to auxiliary channels to identify noise artifacts in the GW channel.
- Handling 810 input variables per trigger, feeding into ANN's input layer.
- Preliminary results show better performance than DQ category.
- Genetic algorithm can optimize ANN for choosing the initial guess of connection weights, input features, and values of topological parameters.
- Worth further investigation

Thank you for your attention! ありがとうございます。

crossover (v) parameter settings for the algorithm, the prob(operators)

Genetic Algorithm

 Optimization / Machine learning (loosely) based on biological evolution; natural selection of genes

snail mail

e-mail

• Five components time encoding solutions into chromosomes (string) (i)

JSers

an evaluation function (ii)

Snail mail V Email

- (iii) initialization of population of chromosomes
- (iv) operators for reproduction: mutation and
- operators, i.e., N(population), N(generations),

Genetic Algorithm

• Operation of GA

Machine Learning Algorithms in practice

- MVSC
- SVN
- ANN
- Hierarchical vetoes

Artificial Neural Networks

Artificial Neural Networks

iRPROP(Igel & Hüsken, 2009) implemented in FANN lib.

$$\begin{split} \omega_{ij}^{(t+1)} &:= \omega_{ij}^{(t)} + \Delta \omega_{ij}^{(t)} \\ \Delta w_{ij}^{(t)} &:= -\operatorname{sign} \left(\frac{\partial E}{\partial w_{ij}}^{(t)} \right) \cdot \Delta_{ij}^{(t)} \\ \Delta_{ij}^{(t)} &:= \begin{cases} \min \left(\eta^+ \cdot \Delta_{ij}^{(t-1)}, \Delta_{\max} \right) &, \text{ if } \frac{\partial E}{\partial w_{ij}}^{(t-1)} \cdot \frac{\partial E}{\partial w_{ij}}^{(t)} > 0 \\ \max \left(\eta^- \cdot \Delta_{ij}^{(t-1)}, \Delta_{\min} \right) &, \text{ if } \frac{\partial E}{\partial w_{ij}}^{(t-1)} \cdot \frac{\partial E}{\partial w_{ij}}^{(t)} < 0 \\ \Delta_{ij}^{(t-1)} &, \text{ otherwise }, \end{cases} \\ \frac{\partial E^{(t)}}{\partial \Delta_{ij}^{(t-1)}} &= \frac{\partial E^{(t)}}{\partial w_{ij}^{(t)}} \frac{\partial w_{ij}^{(t)}}{\partial \Delta_{ij}^{(t-1)}} = -\frac{\partial E}{\partial w_{ij}} \operatorname{sign} \left(\frac{\partial E}{\partial w_{ij}}^{(t-1)} \right) \end{split}$$

KleineWelle Wavelet Transformation

Discrete Dyadic Wavelet transform to decompose the time series into a logarithmically-spaced time-frequency plane

Time

Input Variables

- (a) Significance of loudest trigger within +/- 100ms, or significance of nearest trigger if none exists (sig is related to the SNR)
- (b) Δt to triggers in (a)
- (c) duration of trigger in (a)
- (d) freq of AUX trigger in (a)
- (e) npts in AUX trigger in (a)

signal (=glitch)	clean
loud glitches	random time

