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Motivation

Rep. Prog. Phys. 72 (2009) 076901 B P Abbott et al
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Figure 9. Distribution of strain noise amplitude for three
representative frequencies within the measurement band (data
shown for the H1 detector). Each curve is a histogram of the spectral
amplitude at the specified frequency over the second half of the S5
data run. Each spectral amplitude value is taken from the Fourier
transform of 1 s of strain data; the equivalent noise bandwidth for
each curve is 1.5 Hz. For comparison, the dashed gray lines are
Rayleigh distributions, which the measured histograms would
follow if they exhibited stationary, Gaussian noise. The high
frequency curve is close to a Rayleigh distribution, since the noise
there is dominated by shot noise. The lower frequency curves, on
the other hand, exhibit non-Gaussian fluctuations.

instruments constitute only one half of the ‘Gravitational-
Wave Observatory’ in LIGO. The other half is the computing
infrastructure and data analysis algorithms required to pull out
GW signals from the noise. Potential sources and the methods
used to search for them are discussed in the next section. First,
we discuss some features of the LIGO data and their analysis
that are common to all searches.

The raw instrument data are collected and archived for off-
line analysis. For each detector, approximately 50 channels
are recorded at a sample rate of 16 384 Hz, 550 channels at
reduced rates of 256–4096 Hz and 6000 digital monitors at
16 Hz. The aggregate rate of archived data is about 5 MB s−1

for each interferometer. Computer clusters at each site also
produce reduced data sets containing only the most important
channels for analysis.

The detector outputs are pre-filtered with a series of
data quality checks to identify appropriate time periods to
analyze. The most significant data quality (DQ) flag, ‘science
mode’, ensures the detectors are in their optimum run-time
configuration; it is set by the on-site scientists and operators.
Follow-up DQ flags are set for impending lock loss, hardware
injections, site disturbances and data corruptions. DQ flags
are also used to mark times when the instrument is outside its
nominal operating range, for instance when a sensor or actuator
is saturating, or environmental conditions are unusually high.
Depending on the specific search algorithm, the DQ flags
introduce an effective dead-time of 1–10% of the total science
mode data.

Injections of simulated GW signals are performed to
test the functionality of all the search algorithms and also to

measure detection efficiencies. These injections are done both
in software, where the waveforms are added to the archived
data stream, and directly in hardware, where they are added
to the feedback control signal in the differential-arm servo.
In general, the injected waveforms simulate the actual signals
being searched for, with representative waveforms used to test
searches for unknown signals.

As described in the section on instrument performance,
the local environment and the myriad interferometer degrees-
of-freedom can all couple to the GW channel, potentially
creating artifacts that must be distinguished from actual
signals. Instrument-based vetoes are developed and used to
reject such artifacts [51]. The vetoes are tested using hardware
injections to ensure their safety for GW detections. The
efficacy of these vetoes depends on the search type.

7. Astrophysical reach and search results

LIGO was designed so that its data could be searched for GWs
from many different sources. The sources can be broadly
characterized as either transient or continuous in nature, and
for each type, the analysis techniques depend on whether the
gravitational waveforms can be accurately modeled or whether
only less specific spectral characterizations are possible. We
therefore organize the searches into four categories according
to source type and analysis technique.

(i) Transient, modeled waveforms: the compact binary
coalescence search. The name follows from the fact that
the best understood transient sources are the final stages of
binary inspirals [52], where each component of the binary
may be a NS or a BH. For these sources the waveform
can be calculated with good precision, and matched-filter
analysis can be used.

(ii) Transient, unmodeled waveforms: the gravitational-wave
bursts search. Transient systems, such as core-collapse
supernovae [53], BH mergers and NS quakes, may
produce GW bursts that can only be modeled imperfectly,
if at all, and more general analysis techniques are needed.

(iii) Continuous, narrow-band waveforms: the continuous
wave sources search. An example of a continuous source
of GWs with a well-modeled waveform is a spinning NS
(e.g. a pulsar) that is not perfectly symmetric about its
rotation axis [54].

(iv) Continuous, broadband waveforms: the stochastic
gravitational-wave background search. Processes
operating in the early universe, for example, could have
produced a background of GWs that is continuous but
stochastic in character [55].

In the following sections we review the astrophysical
results that have been generated in each of these search
categories using LIGO data; [56] contains links to all the LIGO
observational publications. To date, no GW signal detections
have been made, so these results are all upper limits on various
GW sources. In those cases where the S5 analysis is not yet
complete, we present the most recent published results and also
discuss the expected sensitivity, or astrophysical reach, of the
search based on the S5 detector performance.
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Figure 1: False alarm probabilities for real data and theoretical estimates for Gaussian noise. The

theoretical expectation from Gaussian in coincidence between detectors has large uncertainty due

to how coincidence is defined between parameters. Extremely loose parameter tolerances between

sites lead to false alarm curves near the top of the gray shaded area. LIGO inspiral searches tend

to have loose parameter tolerances in order to avoid missing possible detections. This figure also

illustrates how using effective SNR, ρeff , brings the real data background closer to the predicted

background (solid curve). SNR alone gives a significantly higher false alarm rate (dashed curve).

3

glitch rate

Abbott et al. (2009)
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Goals

• Automate process of glitch identification

• machine learning algorithms 

• O(103) of auxiliary channels

• Develop monitoring tools

• detector characterization 

• feedback to instrumental scientists

• exploration of important channels in glitch identification
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Auxiliary Channel

Power line glitch (noise transient)

Magnetometer channel

 initial LIGO ~1,000 aux channels

 advanced LIGO ~10,000 aux channles

GW channel
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Input Variables

signal (=glitch) clean

loud glitches random time
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Input Variables

LIGO S4 Auxiliary channel data 
input dimension : 810 (=162 ch. x 5 attr.)
Glitches : 16174
Clean Samples : 98147

LIGO a week data of S6
(959131741~)
input dimension : 1250
                        (=250 ch. x 5 attr.)
Glitches : 2826
Clean Sample : 99869
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Machine Learning Algorithms

Stanford online ML Class

Algorithms that allow computers to evolve 
behaviors based on empirical data, such 
as from sensor data or database.

Automatic learning to recognize complex 
patterns and make intelligent decision 
based on data

                                             (from wikipedia)

classification
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Artificial Neural Networks
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Preliminary PerformancePreliminary Performance

ANN

Random selection

DQ 2

DQ 2+3

DQ 2+3+4
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Important Channels

S(i) = ΣM |(w(i, l1)w(l1, l2)....w(lM−1, lM )w(lM , o)|

ΣM = ΣL1
l1=1Σ

L2
l2=1.....Σ

LM−1

lM−1=1

Significant Factor (SF)

 Indicate an quantitative importance of an input variable(xi) 
to give an output(Y) 

 In ANN, total summation of all connection weights(red 
lines) connected to a given input variable(xi) is considered as 

SF.

 The larger SF indicates the stronger association with noise 

artifacts in GW channel.
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Important Channels

SF

Test week
PRELIM

INARY

 19 of top 35 channels in ANN are matched 

     with the result of HVeto.Important Channels

ANN

L1_OMC-QPD1_P_OUT_DAQ_32_2048=667289.817642
L1_OMC-QPD2_Y_OUT_DAQ_32_2048=660339.342513
L1_OMC-QPD2_P_OUT_DAQ_32_2048=648880.835468
L1_OMC-PZT_LSC_OUT_DAQ_8_1024=611644.083158
L1_OMC-QPD3_P_OUT_DAQ_8_1024=560136.453594
L1_OMC-QPD1_SUM_OUT_DAQ_32_2048=464637.187728
L1_OMC-QPD2_SUM_OUT_DAQ_32_2048=340147.925119
L1_ISI-OMC_CONT_RZ_IN1_DAQ_8_1024=321934.370699
L1_LSC-REFL_Q_32_2048=281685.246617
L1_OMC-QPD4_P_OUT_DAQ_8_1024=247231.541518
L1_OMC-QPD4_Y_OUT_DAQ_8_1024=238743.180353
L1_OMC-PZT_VMON_AC_OUT_DAQ_32_2048=213446.834119
L1_OMC-QPD3_Y_OUT_DAQ_8_1024=210633.289612
L1_ISI-OMC_GEOPF_H1_IN1_DAQ_8_1024=201769.172767
L1_ASC-WFS4_IP_8_256=186508.980033
L1_ASC-WFS3_IP_8_256=174079.131805
L1_ASC-RM_P_8_256=147316.587591
L1_LSC-POB_I_1024_4096=141248.58001
L1_LSC-PRC_CTRL_32_2048=140997.938081
L1_LSC-POB_I_32_2048=132375.465581
L0_PEM-HAM1_ACCZ_8_1024=130893.99712
L1_ASC-ETMX_P_8_256=127461.52814
L1_ASC-ETMY_P_8_256=114186.921959
L1_ISI-OMC_GEOPF_H2_IN1_DAQ_8_1024=108914.685549
L1_ASC-ITMY_P_8_256=108810.943927
L0_PEM-EY_SEISY_8_128=108150.738939
L1_ISI-OMC_GEOPF_V2_IN1_DAQ_8_1024=96507.9823112
L1_ASC-ITMX_P_8_256=91580.4862366
L1_ASC-WFS2_QP_8_256=84060.8204434
L1_ASC-WFS2_IP_8_256=75559.9162881
L1_ASC-WFS1_QP_8_256=73135.1890178
L1_OMC-DUOTONE_OUT_DAQ_1024_4096=69635.8853255
L1_SUS-ETMY_SENSOR_SIDE_8_256=69559.2061476
L1_ASC-QPDY_Y_8_128=63663.2104693
L1_SEI-ETMX_Y_8_128=61582.3383791

HVeto

L1_LSC-POB_Q_1024_4096
L1_OMC-PZT_LSC_OUT_DAQ_8_1024
L1_ISI-OMC_GEOPF_H2_IN1_DAQ_8_1024
L0_PEM-LVEA_SEISZ_8_128
L1_ISI-OMC_GEOPF_H1_IN1_DAQ_8_1024
L1_ASC-ITMY_P_8_256
L0_PEM-LVEA_BAYMIC_8_1024
L1_ASC-BS_P_8_256
L1_LSC-POB_Q_32_2048
L1_ASC-ITMX_P_8_256
L1_ASC-WFS1_QY_8_256
L1_SUS-ETMX_SENSOR_SIDE_8_256
L1_SUS-ETMY_SENSOR_SIDE_8_256
L0_PEM-EX_SEISX_8_128
L1_ASC-ITMY_Y_8_256
L1_OMC-QPD1_P_OUT_DAQ_32_2048
L1_ASC-WFS2_IP_8_256
L1_ASC-ETMX_Y_8_256
L1_OMC-PZT_VMON_AC_OUT_DAQ_32_2048
L1_OMC-QPD1_SUM_OUT_DAQ_32_2048
L1_ASC-WFS2_QY_8_256
L1_SUS-RM_SUSPIT_IN_8_32
L1_OMC-QPD2_Y_OUT_DAQ_32_2048
L1_OMC-QPD2_SUM_OUT_DAQ_32_2048
L1_OMC-QPD2_P_OUT_DAQ_32_2048
L1_ASC-ITMX_Y_8_256
L1_ASC-WFS2_IY_8_256
L1_OMC-QPD3_Y_OUT_DAQ_8_1024
L1_LSC-PRC_CTRL_32_2048
L1_OMC-QPD3_P_OUT_DAQ_8_1024
L0_PEM-HAM1_ACCZ_8_1024
L1_ASC-WFS1_QP_8_256
L0_PEM-EY_MAGX_1_1024
L1_OMC-QPD4_P_OUT_DAQ_8_1024
L0_PEM-LVEA_MAGY_1_1024
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Genetic Algorithm
Optimization / Machine learning (loosely) based 
on biological evolution; natural selection of 
genes

(i)

!"#$%%&

data 
preparation

initialization

ANN Training

finding best 
ROC curve

defining 
parameter sets

build initial 
population

GA
operations

ANN 
Evaluation

ANN
compute ASF, 

ISF
Visualization

Genetic Algorithm

Artificial Neural 
Network

UI
Pre/Post Processing

schematic design of GA_ANN combined pipeline

Initialize the population

Reproduction

choose parents

Replace the worst 
members with the children

choose operator and apply 
to the parents

evaluate the children and 
accumulate them into a 

generation

 GA’s incorporation with ANN

(i) Feature selection

(ii) Topology selection

(iii) Weight selection

(iv) To learn neural network learning 
algorithm

Search global optimum
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Summary

• Artificial Neural Networks (ANNs) has been applied to auxiliary channels to 
identify noise artifacts in the GW channel.

• Handling 810 input variables per trigger, feeding into ANN’s input layer.

• Preliminary results show better performance than DQ category.

• Genetic algorithm can optimize ANN for choosing the initial guess of 
connection weights, input features, and values of topological parameters.

• Worth further investigation
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Thank you for your attention!
ありがとうございます。
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Genetic Algorithm

crossover

mutation

Optimization / Machine learning (loosely) based 
on biological evolution; natural selection of 
genes

Five components

(i) encoding solutions into chromosomes (string)

(ii) an evaluation function

(iii) initialization of population of chromosomes

(iv) operators for reproduction: mutation and 
crossover

(v) parameter settings for the algorithm, the 
operators, i.e., N(population), N(generations), 
prob(operators)

us
er

s

time

snail mail
e-mail

Text
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Genetic Algorithm !"#$%%&

data 
preparation

initialization

ANN Training

finding best 
ROC curve

defining 
parameter sets

build initial 
population

GA
operations

ANN 
Evaluation

ANN
compute ASF, 

ISF
Visualization

Genetic Algorithm

Artificial Neural 
Network

UI
Pre/Post Processing

schematic design of GA_ANN combined pipeline

Operation of GA

Initialize the population

Reproduction

choose parents

Replace the worst 
members with the children

choose operator and apply 
to the parents

evaluate the children and 
accumulate them into a 

generation

 GA’s incorporation with ANN

(i) Feature selection

(ii) Topology selection

(iii) Weight selection

(iv) To learn neural network learning 
algorithm

Monday,	 May	 28,	 



Machine Learning Algorithms in practice

• MVSC

• SVN

• ANN

• Hierarchical vetoes

418 12. Flexible Discriminants
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FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
maximal margin of width 2M = 2/‖β‖. The right panel shows the nonseparable
(overlap) case. The points labeled ξ∗j are on the wrong side of their margin by
an amount ξ∗j = Mξj; points on the correct side have ξ∗j = 0. The margin is
maximized subject to a total budget

P
ξi ≤ constant. Hence

P
ξ∗j is the total

distance of points on the wrong side of their margin.

Our training data consists of N pairs (x1, y1), (x2, y2), . . . , (xN , yN ), with
xi ∈ IRp and yi ∈ {−1, 1}. Define a hyperplane by

{x : f(x) = xT β + β0 = 0}, (12.1)

where β is a unit vector: ‖β‖ = 1. A classification rule induced by f(x) is

G(x) = sign[xT β + β0]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(x) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = xT β+β0 = 0. Since the classes are separable, we can find a function
f(x) = xT β + β0 with yif(xi) > 0 ∀i. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and −1 (see Figure 12.1). The optimization problem

max
β,β0,‖β‖=1

M

subject to yi(xT
i β + β0) ≥ M, i = 1, . . . , N,

(12.3)

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.

We showed that this problem can be more conveniently rephrased as

min
β,β0

‖β‖

subject to yi(xT
i β + β0) ≥ 1, i = 1, . . . , N,

(12.4)

!"#$%$&$
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Artificial Neural Networks
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Artificial Neural Networks

ω(t+1)
ij := ω(t)

ij +∆ω(t)
ij

iRPROP(Igel &Hüsken,2009) 
implemented in FANN lib.
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Input Variables
sc

al
e

Time

Examples of S3 glitches

Discrete Dyadic Wavelet transform to decompose the time 
series into a logarithmically-spaced time-frequency plane

KleineWelle Wavelet Transformation
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Input Variables

(a) Significance of loudest trigger within +/- 100ms, or 
significance of nearest trigger if none exists (sig is related 
to the SNR)

(b) Δt to triggers in (a)

(c) duration of trigger in (a)

(d) freq of AUX trigger in (a)

(e) npts in AUX trigger in (a)

signal 
(=glitch) clean

loud glitches random time
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