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Quantum Limit in GW detectors

Noise Spectrum (1/rtHz)
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A limit that cannot be exceeded by simply increasing power



However, the limit can be circumvented

Several ways to overcome the limit

- Back-action evasion with quantum control
- Application of optical squeezing

* Change of dynamics with an optical spring



Source of quantum noise
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Back-action evasion
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Sensitivity with Back-action evasion

Solid: lossless, Dashed: with loss

—_ 2=
N
T 1073 Ref angle=86 deg
— T T > ——
\..g 4: . T =
E N R angle = 80 deg
T 1%~ |
O = -
S E Ref angle = O deg
% 4: — 4 ‘
5 ommemmteVem s S

10-24_I | L 1 | | 1 | | | L | | | | 1 | | | LI IShOT nOise Only

56789' 2 3 4 56789' 2 3 4 56789'
10 100 1000
Frequency (Hz)

* Exceeding SQL in a narrow band
+ Weak against optical losses



By the way...

How come we can exceed the SQL?

Was Heisenberg wrong??



SQL in a GW detector

GW detector Heisenberg
Radiation pressure :
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GW detectors see the “"force”

X A
mX = kg, + Fgp
Radiation pressure (amp modulation)
X
l \ Vacuum field (amp + phase)

detector output VY

We can try not to see the radiation pressure motion
(though the mirror IS moving).



Various ways to overcome the SQL

* Back-action evasion
+ Squeezed vacuum injection
» Optical spring

» Optical inertia
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Squeezing
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7dB squeezing

Make an imbalance between
photon-number fluctuation
and phase fluctuation using
a non-linear crystal.
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Sensitivity depends on the shape
of vacuum:

~ low shot noise (left)

~ low radiation pressure (right)
~ overcoming SQL (intermediate)



How to make squeezing

Pre-stabilized laser
[n-vacuum

reference cavity

[Squeezing Process]
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Goda et al, Nature Physics 2008

* Has been implemented in GEO and LIGO
* An issue is the optical loss



Broadband squeezing
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* Rotation of the squeeze angle in the filter cavity
* Frequency-dependent squeezing can be realized

==)> Optimal squeezing at each frequency



Strain Sensitivity (1/rtHz)
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» High freq peak: signal resonance
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Strain Sensitivity (1/rtHz)
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» High freq peak: signal resonance
* Low freq peak: radiation pressure causes optical spring

Susceptibility to GW increases so one can exceed
the SQL defined for free mass measurement.



Optical spring experiments

Somiya et al, Appl. Opt. 44, 16 (2005)
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- Signal amplification can be tested by TF measurement
+ Spring freq is determined by mirror weight and power
- Optical spring system is to be implemented in KAGRA



Optical spring response
Signal (PM)
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Optical inertia in a Sagnac interferometer

Interference
of CW and CCW
beams Signal (PM) Differential probe
<= X — time derivative
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Quantum noise spectrum of Sagnac

* With arm cavities; optical parameters are well tuned

Sensitivity (1/rtHz)
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Theme of the quantum noise reduction

(1) We need a regime that is strong against losses
(2) Exceeding the SQL in broadband would be good

(3) We need a regime to do so with low power

New ideas are welcomell [w

© KAGRA
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