グリーンロック実験報告

和泉究

東京大学大学院・天文学専攻

概要

待望の第2世代レーザー干渉計を使った重力波の直接観測がもうすぐ始まる!! ところが。

レーザー干渉計の難しいところ

デザインどおりの干渉状態 (終状態/観測状態) を得るまでは 干渉計は非常に非線形な応答をする

結果として

- ・光路長の制御が難しい
- ・終状態まで移行する作業(ロックアクイジション)が困難

解決策

Arm Length Stabilisation technique (ALS、もしくは単にグリーンロック)が提案

- ・40m 基線長のプロトタイプ干渉計実験を行い、要求値を満たす性能を達成。
- ・第2世代干渉計への有益さが確認できた

アウトライン

- 1. イントロ ~レーザー干渉計~
- 2. 干渉計の光路長制御
- 3. ロック ~2つの確率的過程~
- 4. ALS 評価実験
- 5. まとめ

1. イントロ ~レーザー干渉計~

国際観測ネットワーク

第2世代干渉計

Goal in aLIGO

~ 200 Mpc for NS-NS

~ few events / year

2. 干渉計の光路長制御

光路長制御が必須

デザイン 感度

正しい干渉条件

鏡間の光路は常に干渉条件を 満たす長さでなければならない

実際には さらに

鏡の位置は地面振動により 常に動いている!

光路長を制御することが 必須

光路長制御

変調/復調法のおさらい

√ サイドバンド => ローカル・オスシレータ

√キャリア => 光路長情報を運ぶ

変調/復調法から得られる信号

共振点まわり (~ 1nm) で線形信号

一度線形域内に引込めば線形制御できる

光共振器の特性

- ・広い "DAED" な領域。
- サイドバンドも長さによっては共振する。

いったんまとめ

- * 干渉計の光路長制御は必須
- *ロック = 初期状態から終状態への移行
- *変調法により線形信号をえる
- * サイドバンドはローカルオスシレータ
- * 共振器は広大な"DEAD"領域を持つ
- * 共振器長さによってはサイドバンドも共振

3. ロック

~2つの確率的過程~

スムーズなロックを妨げる大きな要素

- 1- 力学的にきまる確率過程
- 2- 複数共振器をロックする際の初期値確率問題

ロックアクイジションの例

力学的な確率過程

共振通過時の速度が確率的 速度が速すぎる => ロックできない

図 3.3 共振通過時の速度の度数分布

例その2: 複合共振器のロック

腕の初期状態に左右される確率

腕がサイドバンド共振を通過 DRMIのロックが破壊される

決定論的なロックが欲しい

- √腕の長さを pre-fix しておきたい
- √ SB が共振しない初期状態を作っておきたい
- √ 2つの確率過程が存在しない、well-defined なステップがほしい

新ロック過程

ALSを使う

腕を最初から制御。 オフ-レゾナンス 状態にロックしておく DRMIを通常の変調/復調法でロックする

腕のオフセットを 減らす フルロック!!

Arm Length Stabilization (ALS)

- + 周波数倍した YAG laser をETMから入射
- + DRMIの共振条件に関係なく、腕の動きだけを 読み取る
- + 腕の初期状態を最初から準備・コントロールできる

ALS の働き

干渉計は複数アウトプット系

ALS を使うとマトリクスがクリーンになる

4. ALS 評価実験

試験の概要

aLIGO のコミッショニングに先んじて、 ALS のパフォーマンスの評価を行う

- + 40m の懸架 Fabry-Perot 共振器 1 本
- + DRMI なし(わざとミスアライン)
- + 腕の光路長さを任意に用意できることを示す
- + ノイズ要求値の達成と、ノイズの解析

40-m プロトタイプ干渉計

- カルテクのキャンパス内に存在
- 40m 基線長
- aLIGO のプロトタイプ
- aLIGOで仕様される制御技術などの開発/評価
- 自動制御に向けたスクリプト/コードを制作

すべての真空用オプティクスがインストール済み。 いままさにコミッショニングを行っている

BSから見たパノラマ写真

実験の概観

腕の変位 ~1um を安定化させ、共振まで運ぶ 目標安定度は rms 値 で 1nm (腕の線幅) 以下

AUX レーザーセットアップ

- AUX レーザーの周波数を腕に変調法を使いロック
- 速いサーボ(高いUGF)が必須
 - (1) レーザーの周波数雑音を下げる
 - (2) ロックがかかりやすくなる

AUXレーザーセットアップ

腕変位の安定化

RF ビート信号 ^{■●} 線形オーディオ信号に変換 その後に共振器長へ feedback

ビート信号の読み取り: DFD

DFD does the frequency discrimination

DFD (Delay-line Frequency Discriminator)

- coarse discriminator
 - ⇒ time delay for = 7.5 nsec (1.5 m cable)
 - → +/- 33 MHz linear range
- fine discriminator
 - ⇒ time delay for fine = 28 nsec (55 m cable)
 - ⇒ +/- 1MHz linear range

Arm displacement ~ 5 MHz (1 um)
Coarse DFD suppresses motion to ~ 100 Hz
Switch to fine DFD to increase sensitivity

Noise :

~ 3 Hz/Hz^{1/2} @ 1 Hz limited by the comparator

ロックの順序

安定度の評価

変位は rms 値で 24 pm まで抑えることに成功 要求値である 1nm をクリア

(* frequency of green light)

4 km での雑音

aLIGOでの雑音もオッケー:ただし以下の項目をクリアいくつかの雑音は長さに比例して、100倍寄与が大きくなる

AUX レーザーの周波数雑音

100 倍寄与が大きくなる

AUXレーザーの周波数ロックループの最適化(より大きなサプレッション)が必要となってくる

● ディスクリミネータの雑音

100 倍寄与が大きくなる

そもそも beat-note の周波数振れ幅は100倍小さくなるので、 小さいレンジかつレゾリューションの細かいディスクリミネータを用意 (VCO-PLL)

• 地面振動

寄与の仕方は変わらない。むしろ防振系がすばらしいので、対処しやすくなる

まとめ

- ・ 重力波の直接観測がもうすぐ始まる
- ・ レーザー干渉計の光路長制御は必須
- ・ロックの難しさ 2つの確率的過程が存在
- ・ ALS を用いることにより 2つの確率過程を避ける
- ・ 40m 基線長のプロトタイプで1本腕を使った ALS 試験
- ・ 腕の初期値を任意に用意できることを確認
- ・ 腕の安定度 1um => 24 pm
- ・ 雑音の評価 => 4 km 腕ではいくつかの雑音が 100倍厳しいが対処可能

Appendix Difference between the 40m and aLIGO interferometer

	40m	aLIGO
LSC - sidebands	11 MHz & 55 MHz	9 MHz & 45 MHz
LSC - 3f demod		
Small Schnupp asym.		
Arm finesse (IR)	450	450
Green arm length stabilization		
Arm cavity power	3 kW	850 kW
GW readout	Old copper bowtie OMC	Monolithic OMC
WFS	IMC only	IMC and IFO
Suspensions	Single pendulum	Triple & Quad pendulum
Optic Mass	0.25 kg	40 kg