



# External forces from heat links in cryogenic suspensions

# D1, ICRR, Univ. Tokyo Takanori Sekiguchi

**GWADW** in Hawaii



# About this Talk



- Estimate seismic noise introduced from heat links.
- Discuss how to achieve cooling and seismic isolation at the same time.







# Seismic Noise from Heat Links





# Basic Requirement for KAGRA Test Mass Suspension



- Attenuate seismic noise
   Test Mass Displacement
  - $< 3 \times 10^{-20} \text{ m/}\sqrt{\text{Hz} @ 10 \text{ Hz}}$
- \* Cool down test masses
   Mirror Temp. ~ 20 K



### Seismic Attenuation System for KAGRA Test Mass

 \* Seismic vibration transmits to the mirror in two different paths

- 1. From the top through the attenuation chain
- 2. From the wall of the cryostat through heat links





Hawa

#### Heat transferred via pure aluminum heat links.







# Mechanical Property of Heat Links

Hawa

\* A heat link works as a soft spring  $(f_0 \sim 10 \text{ mHz})$ with **violin modes** above ~1 Hz



#### FEM Simulation Done by Y. Aso, (JGW-G1000108)





# Estimation of Seismic Noise via Heat Links

Hawa

# Simulation Tool: 3-D rigid-body model simulation T. Sekiguchi, Master Thesis (JGW-P1200770)





## **Calculation Result**



**Polluting detector sensitivity above 10 Hz !!** 

2012/5/15

Hawa







# Vibration Inside the Cryostat in CLIO



#### 10-100 times larger !!



**GWADW 2012** 



### In Worse Case



If the attachment point of heat links is vibrating at the same level as cryostat vibration in CLIO..





#### Improved Design



#### \* Add one more "cushion" between the cryostat and mirror







#### **Consideration on Cooling**





\* Pure aluminum Φ 3 mm, L=63 cm, Number: 5



### After Improving Wiring





**GWADW 2012** 

15



### After Improving Wiring





# Possible Ideas of Further Improvement



- \* Suppress the cryostat vibration passively/actively.
- \* Put additional filters between suspension and cryostat.



\* Add **vertical springs** for test mass suspension.





# **Another Consideration**



# Effect on Angular Motion



- \* SAS is very soft in yaw motion (~ 10 mHz).
- \* Low frequency yaw motion can be easily excited.



**Top View** 



**GWADW 2012** 



# **Effect on Angular Motion**



\* If one employs **asymmetric** wiring of heat links..



Mirror Yaw Angle



# Symmetric Configuration



- \* **Symmetric** wiring does not subject any torque.
- ∗ If you admit 10% thickness difference in two connections
   → Blue Curve







# Summary



# Summary



- \* **Careful wiring** of heat links is required, in order to mitigate the seismic noise introduced from them.
- Further isolation, or improvement of the suspension design may be necessary.
- \* Yaw excitation by heat links would be **not** so huge (be in a controllable level).



# Future Works



★ Transfer function measurement of heat links.
 (How to ??)



- \* Vibration measurement inside the cryostat.
  - \* L. Naticchioni and D. Chen will start this autumn









# The END

**GWADW 2012** 





GWADW 2012







# Appendices



# Requirement for KAGRA Test-Mass Suspensions (1)

 Seismic noise should be much lower (at least 10 times smaller) than other noises at the detector observation band (> 10 Hz).

Seismic Noise Requirement: < 3 x 10<sup>-20</sup> m/√Hz @ 10 Hz And rolls off steeper than f<sup>-3</sup> **KAGRA Design Sensitivity** 





Requirement for KAGRA Test-Mass Suspensions (2)



 Mirror temperature should be as low as 20 K to suppress thermal noise.



Substrate thermoelastic noise  $(\propto T^{2.5})$  gets lower than coating Brownian noise $(\propto T^{0.5})$  at < 23 K



**Cryostat** 

~13 m

### Seismic Attenuation System (SAS) for KAGRA



 \* 7-stage pendulum + 5-stages vertical spring (horizontal attenuation) (vertical attenuation)

Metal cantilever springs



Geometric Anti-Spring (GAS) Filter

**f**<sub>0</sub> ~ **0.3 Hz** 

Last 3 stages are cooled at **cryogenic** temperature (<20 K) to suppress **thermal noise** 

#### Mirror (Test Mass)

\* Beam splitter and other optics are suspended by smaller vibration isolation systems





#### SAS Status

#### Prototype Experiment:

Standard filter (GASF): Performance was measured @NIKHEF Pre-isolator (IP&GASF): Now Measuring @ Kashiwa

#### Design:

Type-B Payload: Now Designing







Hawa

Measured Transfer Function (Feb. 16th, 2011)







# Initial Cooling Time



Thermal simulation with Y. Sakakibara's Method

\* The inner shield and the masses except for the test mass are DLC-coated (ε=0.41).

\*\* Radiation cooling is dominant before 15th day.



# Initial Cooling Time Calculation Diagram

#### By Y. Sakakibara



**GWADW 2012** 

Hawai



### Heat Load

\*



\* Absorption in mirror
Coating: 0.4 W (1ppm)
Substrate: 0.6 W (50 ppm/cm)
Total: 1.0 W

Inner shield Radiation from 80 K: 1.3 W Conductance: 0.8 W Scattered Light: **5 W** (10 ppm) **Total: 7.1 W** 



### Heat Extraction Scheme



 In the new heat extraction scheme, mirror temperature would not be raised, even if large scattered light attacks the shield.





T [K]



# Heat Link TF Calculation





#### FEM Simulation Done by Y. Aso, (JGW-G1000108)

- \* Pure aluminum (E=68 GPa), Φ1 mm
- \* Half-ellipsoid (a=400 mm, b=200 mm)
- \* Loss angle: 10<sup>-4</sup>





Frequency [Hz]

**GWADW 2012** 







### Seismic Noise via Heat Links

Hawa

2012/5/15

#### \* Couplings from the **vertical** motion is dominant above 3 Hz.





# Heat Links with Half Diameters



How about decreasing the fiber thickness,
 from Φ1.0 mm to Φ0.5 mm ?

- \* Heat conductivity per link: x 1/4
- \* Necessary number of links: x 4
- \* Spring constant per link: x 1/16
- \* Total stiffness: 1/4
- \* Heat link total mass: **Same**



### Hot Platform Design





Push heavy Platform to the **room temperature** part.

Decrease the **initial cooling time**.

Another vibration shortcut occurs between IM and IRM





# Hot Platform Seismic Noise





Due to the **vibration shortcut**, seismic noise gets larger **above 10 Hz** in ~1 order of magnitude

Hot Platform Current Design



# Heat Links with Half Diameters





Hawa



### **Torsion Mode Damping**



Eddy current damping for yaw modes







### **Torsion Mode Damping**





Mirror yaw angle response to applied torque

**GWADW 2012** 

2012/5/15

Hawa



#### Effect on Angular Motion



#### RMS: 0.5 µrad 10<sup>-5</sup> Spectrum Density [rad/rtHz] RMS Angle [rad] Stiffness asymmetry $10^{-6}$ (50%) $10^{-7}$ $10^{-8}$ Attachment point 10<sup>-9</sup> asymmetry (1 cm) $10^{-10}$ 10<sup>-11</sup> 0.500 0.005 0.010 0.050 0.100

Frequency [Hz]

**GWADW 2012**