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Chapter 1

Introduction

In this document, we will describe the design of the KAGRA interferometer. KAGRA will be developed
in two phases. The first phase of KAGRA is called initial KAGRA or iKAGRA. This is a reduced
version of the full configuration KAGRA, which is referred to as the baseline KAGRA or bKAGRA. The
main purpose of iKAGRA is to gain experience in operating a large interferometer in the underground
environment and to identify potential facility problems as early as possible. Therefore, the design of
iKAGRA is derived from bKAGRA as a natural pass point to the full configuration. For this reason,
we will mainly focus on design of bKAGRA interferometer. At the end of this document, the iKAGRA
design is explained by pointing out the difference between the bKAGRA configuration.

1.1 Requirements

The bKAGRA interferometer has to meet the requirements listed below.

• The main interferometer has to be able to achieve the target sensitivities of bKAGRA shown in
Figure 1.1 and 1.2. These target sensitivities are determined as a result of the optimization of the
optical parameters given fundamental noise sources other than quantum noises. Details of the
optimization work are described in [1].

• bKAGRA has two operation modes: BRSE and DRSE. The main interferer configuration should
allow us to switch between the two modes within a reasonable amount of time.

• The control schemes of the KAGRA has to be robust enough to ensure stable operation of the
interferometer in the environmental disturbances of Kamioka mine. The target duty cycle during
the observation is more than 90%.
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Chapter 2

Optical Configuration

2.1 Overview

The main interferometer part of bKAGRA is a dual recycled Fabry-Perot Michelson interferometer
operating in a resonant-sideband extraction (RSE) mode. This interferometer is designed to be operated
in two modes, Broadband RSE (BRSE) and Detuned RSE (DRSE). The schematic view of the main
interferometer and the naming convention of the interferometer components are shown in Figure 2.1.

Figure 2.1: Schematic of the main interferometer and the naming convention of IFO parameters
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Parameter Name Value Comments
Arm cavity length 3000.00m
ITM Reflectivity 99.6%
ITM Radius of Curvature 1680(±8)m
ITM Beam Size 3.5 cm 1/e2 radius
ETM Reflectivity >99.9945%
ETM Radius of Curvature 1870(±9)m
ETM Beam Size 4.0 cm 1/e2 radius
g-factor 0.473 g1 · g2
Round Trip Loss <100 ppm
Finesse 1530

Table 2.1: Arm cavity parameters

2.2 Arm Cavity Parameters

The arm cavity (AC) parameters are summarized in Table 2.1. The arm cavity length is constrained
to less than 3 km by the size of the mountain. So we chose the largest one. The finesse of the arm
cavities is about 1500. This rather high finesse is chosen to avoid high optical power from transmitting
through ITMs, thus reducing the heat generation in the mirror [1]. This is critical to meet the cooling
capacity of the cryocoolers. From the finesse, the reflectivities of the mirrors are determined. The
round trip loss of the cavity including the ETM transmission should be less than 100 ppm. As more
concrete requirements, we assign 10 ppm to the transmission and 45 ppm each to the reflection loss of
each mirror.

g-factor

The radius of curvature of the mirrors are selected to realize the desirable beam spot sizes on the
mirrors. From the point of view of the thermal noise, we want to make the spot size as large as possible.
Considering the size of the mirror (22 cm diameter) and requiring the diffraction loss per reflection to
be less than 1 ppm, the largest possible beam radius is 4.0 cm. We employ this number as the ETM spot
size. For the ITMs, the dielectric coating is thinner because of the smaller reflectivity. Thus, the impact
on the sensitivity is minimal, even if we reduce the beam size on the ITMs to 3.5 cm (the reduction of
the sensitivity in terms of the inspiral range by this change is about 2Mpc [2]). A smaller beam in the
vertex makes it easier to handle the stray beams in the congested BS chamber. Therefore, we decided
to set the beam size on the ITMs to be 3.5 cm.

There are two possible choices of mirror curvatures to realize the same spot sizes. The first set
of the ROCs is ITM=14km and ETM=7.5km, which gives positive g-factors, g1=0.786 and g2=0.602.
Another possibility is ITM=1.68km and ETM=1.87km, corresponding to negative g-factors, g1=-0.786
and g2=-0.602. In order to decide the polarity of the g-factors, we considered the higher order mode
(HOM) resonances, parametric instability and the angular optical spring instability.

2.2.1 Arm Cavity Higher Order Mode Resonances

Ideally, the arm cavities should resonate only the TEM00 mode. However, optical higher modes are
not completely anti-resonant to the AC in general. Therefore, if there is mis-alignment or mode mis-
matching, HOMs could resonate in the AC, potentially increasing the shot noise. If the selected arm
g-factor is a particularly bad one, this HOM coupling could be large. In this section, we will check if
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Figure 2.2: HOM power in the arm cavity relative to the TEM00 power. The mode number is defined
as n+m for TEMnm modes.

our arm cavity design is robust against this problem. We will compare the two cases of g-factors, the
negative one and the positive one.

Figure 2.2 shows the HOM power ratio to the TEM00 power in the AC. This is the ratio of the
intra-cavity optical power, if TEM00 and TEMnm modes are injected to the AC with the same power.
Of course, it is very unlikely, thus in reality, the ratio is much smaller.

When calculating the HOM power, we took into account the fact that for HOMs, the diffraction loss
is higher than TEM00. This is because HOMs are spatially spread more widely. Figure 2.3 shows the
resonance curves of various HOMs. The power build up is suppressed quickly as the mode number gets
higher. These curves are calculated using SIS[ref].

Figure 2.2 assumed that the g-factor of the cavity is exactly as designed. In reality, there is always
some error in the ROC of the real mirrors. We set the error tolerance to be ±0.5% mainly from the
technical feasibility of the mirror polishing. Figure 2.4 and Figure 2.5 show the maximum HOM power
ratio (the value of the highest peak in Figure 2.2 except for the mode number = 0) as a function of ITM
ROC error and ETM ROC error. The ROCs are swept by ±1% of the nominal values. These figures
are for the negative g-factor case. Figure 2.6 and Figure 2.7 show the same plots for the positive g-factor
case. In both the cases, the HOM power does not go up so much within the tolerated ROC errors.

g-factor

By comparing the dependence of the HOM resonance in the AC on the mirror ROC errors between the
negative and positive g-factor cases, there is no significant difference between them. Therefore, both
g-factors are acceptable from the point of view of this problem.
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Figure 2.4: The maximum HOM power ratio in the AC as a function of ITM ROC error for the negative
g-factors. The ROC is swept by ±1% around the nominal value.
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Figure 2.5: The maximum HOM power ratio in the AC as a function of ETM ROC error for the positive
g-factors. The ROC is swept by ±1% around the nominal value.
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Figure 2.6: The maximum HOM power ratio in the AC as a function of ITM ROC error for the positive
g-factors. The ROC is swept by ±1% around the nominal value.
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Figure 2.7: The maximum HOM power ratio in the AC as a function of ETM ROC error for the positive
g-factors. The ROC is swept by ±1% around the nominal value.

2.2.2 RF Sidebands Resonances in the Arm Cavities

Fine Adjustment of the RF Sideband Frequencies

As explained in section 3, we will use three RF sidebands (RF SBs), namely f1, f2 and f3, to extract the
error signals for the interferometer control. We also want to prevent the RF sidebands including their
HOMs from accidentally resonating in the arm cavities. The f3 sideband is not resonant in the PRC, so
it does not see the arm cavities at all. Therefore, we only consider f1 and f3 sidebands in this section.

Before proceeding to check the HOM resonances of the RF sidebands, there is a subtle but important
point to note about the fine adjustment of the sideband frequencies. The RF sidebands f1 and f2 are
almost anti-resonant to the arm cavities but not perfectly so. A consequence of this is that they get
finite phase shifts when reflected by the ACs. Those two sidebands are supposed to resonate in the
PRC at the same time. However, if the phase shifts they get from the AC are arbitrary, the resonant
conditions for them is different, thus not being able to resonate both at the same time. A solution to
this problem is the following: The effective length change caused by a phase shift φ for a modulation
sideband with the modulation frequency ωm is ∆L = φc/ωm. Therefore, if the phase shifts for the f1
and f2 SBs are proportional to their frequencies, the effective length change is the same for the two SBs.
Then we can just pre-shorten the PRC length by this amount to fulfill the resonant conditions for both
the SBs at the same time.

In order to adjust the reflection phases for f1 and f2, we need to change their frequencies. However,
as explained in section 3, the ratio of f1 and f2 frequencies has to be 3:8. Therefore, we can only change
the frequencies under the constraint of keeping the ratio unchanged. This condition is automatically
satisfied by requiring the two sidebands to transmit the MC. That is, the f1 frequency is 3 times the
FSR of MC and f2 is 8 times the MC FSR. Therefore, we will slightly change the MC length from its
nominal value to find the optimal RF SB frequencies which give the AC reflection phases proportional to
them. The precise amount of phase shifts induced on nearly-anti-resonant fields depends on the finesse
of the cavity. Therefore, the RFSB frequencies must be adjusted according to the measurement of the
real arm cavities. In the design phase, we assume 100 ppm of loss in the arm, resulting in the finesse
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Figure 2.8: Ratio of the SB reflection phases by the arm cavities. We want to set it to 8/3, which is
indicated by the green line.

of 1530. Figure 2.8 shows the ratio of the reflection phases (φ2/φ1) as a function of the MC length.
The desired value of 8/3 is indicated by the green horizontal line. By finding a intersection of the blue
curve with the green line, the tentative numbers for the RFSB frequencies are, f1=16.881MHz and
f2=45.016MHz. However, again, these numbers should be corrected based on the finesse measurements
of the actual arm cavities. Figure 2.9 shows the relative positions of the RFSBs in the FSR of the arm
cavities.

HOM Resonances of the RF Sidebands

Once the exact frequencies of the RF SBs are determined, we can check the resonant conditions of the
RF SBs and their HOMs in the arm cavities. Figure 2.9 shows the positions of the RF SBs and the
HOMs in the FSR of the arm cavity. In the figure, both the HOM resonant curves (Lorentzian-shaped
curves with mode numbers) and the harmonics of the RF SBs (vertical lines: black for f1, red for
f2). If a vertical line overlaps well with one of the HOM resonances, then this RF SB harmonics may
resonate in the ACs when the cavity is mis-aligned and the HOM is excited. If it happens to the first
harmonics of the RF SBs, which are used for the signal extraction, the error signals will be disturbed
and in the worst case we will lose the interferometer lock. Higher order harmonics are not so important,
but still some of them contribute to the error signal through inter-modulations with other higher order
harmonics. Therefore it is better to avoid overlaps as much as possible.

In order to see how the overlap between the RF SB harmonics and the HOM resonances changes as
the ROC of the mirrors, we use a figure of merit for the overlap defined as follows: For all combinations
of an RF SB harmonics and a HOM, the intra-cavity power is calculated assuming that the SB is 100%
in this HOM. The diffraction loss of Figure 2.3 is taken into account. Then we take the power ratio
between this calculated power to the TEM00 power in the cavity. The FOM is the maximum of this
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Figure 2.11: Figure of merit of the overlap between the RF SB harmonics and the HOMs when the
ITM ROC is swept. g-factor is negative.

ratio from all the combinations of the RF SB harmonics and the HOMs. Figure 2.11, 2.12, 2.13 and
2.14 show the FOM as a function of ROC errors, ranging, again, ±1% of the nominal values.

Note that the meaning of the FOM above is not so clear, in a sense that there is no definite
threshold below which the overlap problem is considered safe. A thorough simulation study may give
some quantitative interpretation of the FOM, but we haven’t done it yet. So what we can say from the
above mentioned plots is just that the severity of the overlap does not change much within the specified
error range of the ROCs.

g-factor and the RF SB resonances

By comparing the dependence of the RF SB resonance in the AC on the mirror ROC errors between the
negative and positive g-factor cases, there is no significant difference between them. Therefore, both
g-factors are acceptable from the point of view of this problem.

2.2.3 Parametric Instability

The parametric instability (PI) happens when the shape of an optical higher order mode in the arm
cavity is similar to an elastic mode of the mirror substrate. In addition, the HOM’s resonant frequency
offset from the TEM00 must be very close to the elastic mode’s eigen-frequency. The offset frequencies
of the HOMs depend on the g-factor. Therefore, there are hot spots of g-factor, where PI is large.

The magnitude of the PI is characterized by the parametric gain R [3]. R is associated with each
elastic mode of the mirrors. If there is a mode with R of greater than 1, this mode is unstable. We
want to select a g-factor, with which no unstable mode appears.

Figure 2.15 shows the parametric gain R as a function of the ROCs of ITM and ETM. The ROCs
are swept by ±2% of the nominal values. The colored areas are where R is greater than 1. Details on
how to generate these plots are explained in .
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Figure 2.12: Figure of merit of the overlap between the RF SB harmonics and the HOMs when the
ETM ROC is swept. g-factor is negative.
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Figure 2.13: Figure of merit of the overlap between the RF SB harmonics and the HOMs when the
ITM ROC is swept. g-factor is positive.
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Figure 2.14: Figure of merit of the overlap between the RF SB harmonics and the HOMs when the
ETM ROC is swept. g-factor is positive.

By comparing the plots for the negative and positive g-factors, there is no significant difference. The
most important conclusion drawn from the plots is that there is no continuous white area which is large
enough to accommodate the ±0.5% error of the ROCs. Moreover, the accuracy of the plots is not so
good, because of the limited accuracy of the finite element analysis (using COMSOL). This means we
cannot target a particular g-factor, even if we ignore the manufacturing error, to put our interferometer
at a sweet spot (white area). In the actual interferometer, what seemed to be a sweet spot in calculation
may not be a sweet spot. Therefore, regardless of the polarity of the g-factors, we have to be prepared
for the PI to happen.

Once PI happens, we have to damp the oscillation somehow. Mainly two types of schemes are
proposed to mitigate the PI. One is to put some lossy stuff on the side of the mirrors to damp the unstable
modes. Another scheme is basically an active damping of the unstable mode using the interferometer
output as an error signal. Detailed design of KAGRA PI damper is yet to be discussed.

2.2.4 Angular Instability by the Radiation Pressure

The opto-mechanical coupling between the high power optical fields circulating in the arm cavities and
the mirrors create an angular optical spring effect [5]. For single cavity, there are always two eigen
modes of the angular motions of the mirrors. Out of the two, one mode has a positive spring constant,
meaning that the optical spring generates a restoring force. The other has a negative spring constant,
potentially leading to an instability.

In general, the absolute values of the two spring constants are different. If the g-factors are negative,
the negative spring constant is always smaller than the positive one. For positive g-factors, the order is
the other way around. Therefore, in order to minimize this instability, negative g-factors is preferable.
More quantitative comparison of the positive and negative g-factors is presented in section 5.

15



13800 13900 14000 14100 14200
ITM ROC [m]

7350

7400

7450

7500

7550

7600

7650

E
T

M
 R

O
C

 [
m

]

Maximum Parametric Gain [ log10(Rmax) ]

0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

3.2

3.6

Positive g-factors

1650 1660 1670 1680 1690 1700 1710
ITM ROC [m]

1840

1850

1860

1870

1880

1890

1900

E
T

M
 R

O
C

 [
m

]

Maximum Parametric Gain [ log10(Rmax) ]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Negative g-factors

Figure 2.15: Maps of the maximum parametric gain as functions of the ROCs of the test masses. Left:
positive g-factor, Right: negative g-factor. The ROCs are swept by ±2% of their nominal values. White
areas correspond to Rmax < 1.

2.2.5 Conclusion on g-factors

Based on the discussions in the above few sections, we decided to select the negative g-factors, g1=-0.786
and g2=-0.602, as the design of the KAGRA arm cavities. The main reason for this selection is the
radiation pressure induced angular instability.

The required ROCs to realize the positive and negative g-factors are different (R1=14km and
R2=7.5km for positive, R1=1.68km and R2=1.87km for negative). Which set of ROCs is easier to
manufacture is an important question to be answered. So far, we received contradictory answers from
different companies: one said larger ROCs are easier to do, while another say the opposite. Therefore,
the manufacturability is put out of scope of this document. It shall be addressed by the mirror group
and feedback shall be given to us, the MIF group.

2.3 Recycling Cavities

Overview

There are two recycling cavities (RCs) in the KAGRA interferometer: Power Recycling Cavity (PRC)
and Signal Recycling Cavity (SRC). These cavities are folded in a Z-shape by two telescope mirrors to
accumulate extra Gouy phase. This is necessary to isolate the HOMs in the cavities, i.e. to stabilize
the cavities in terms of the spatial modes.

The parameters of the recycling cavities are listed in Table 2.2.

2.3.1 Reflectivities

The reflectivities of the PRM and SRM are determined as a part to optimize the quantum noise shape
of the interferometer [1].
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Parameter Name Value Comments
Power Recycling Cavity Length 66.591m
Signal Recycling Cavity Length 66.591m
Michelson Average Length 25.0m
Michelson Asymmetry 3.330m
PRM Reflectivity 90%
PRM ROC 464.728m
PRM Beam Size 4.47mm 1/e2 radius
PR2 ROC -3.096m
PR2 Beam Size 4.47mm 1/e2 radius
PR3 ROC 24.904m
PR3 Beam Size 36.56mm 1/e2 radius
SRM Reflectivity 85%
SRM ROC 770.232m
SRM Beam Size 5.07mm 1/e2 radius
SR2 ROC -3.569m
SR2 Beam Size 5.07mm 1/e2 radius
SR3 ROC 25.367m
SR3 Beam Size 36.58mm 1/e2 radius

Table 2.2: Recycling cavity parameters

Parameter Name Value Comments
Power Recycling Cavity Length 66.591m
Signal Recycling Cavity Length 66.591m
Michelson Average Length 25.0m
Michelson Asymmetry 3.330m
PRM Reflectivity 90%
PRM ROC 303.96m
PRM Beam Size 4.03mm 1/e2 radius
PR2 ROC -2.7628m
PR2 Beam Size 4.03mm 1/e2 radius
PR3 ROC 24.574m
PR3 Beam Size 36.479mm 1/e2 radius
SRM Reflectivity 85%
SRM ROC 303.96m
SRM Beam Size 4.03mm 1/e2 radius
SR2 ROC -2.7764m
SR2 Beam Size 4.03mm 1/e2 radius
SR3 ROC 24.584m
SR3 Beam Size 36.327mm 1/e2 radius

Table 2.3: Old recycling cavity parameters
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Parameter Name Value Comments
Lp1 14.761m Distance between PRM and PR2
Lp2 11.0669m Distance between PR2 and PR3
Lp3 15.7638m Distance between PR3 and BS
Ls1 14.761m Distance between SRM and SR2
Ls2 11.0669m Distance between SR2 and SR3
Ls3 15.7638m Distance between SR3 and BS
Folding Angle 0.6293 deg The incident angle to the folding mirrors.

Table 2.4: Folding parameters. See Figure 2.1 for the meaning of the parameters.

2.3.2 Length and RF SB frequencies

The length parameters of the recycling cavities (RCs) are selected to resonate the RF sidebands used for
the control signal extraction, which is explained in section 3. There are two RF sidebands entering the
power recycling cavity (PRC), called f1 and f2. The Schnupp asymmetry of the Michelson part (MICH)
is chosen to perfectly reflect the f2 sideband by MICH, so that f2 does not see the signal recycling
cavity (SRC). The f1 sideband transmits through MICH and resonates in the compound cavity formed
by PRC and SRC through MICH. Another sideband, called f3, will be used during the lock acquisition.
It is not resonant in any part of the interferometer, thus reflected directly back by the PRM. The RF
SB resonant conditions are depicted in Figure 3.1.

Constraints

While there are many possible combinations of the RC lengths and the RF SB frequencies to satisfy
the above mentioned resonant conditions, we have to meet several practical constraints. First of all, the
RCs cannot be too long for the obvious reason of limited space in the mine. From this point of view,
the shorter the better. At the same time, the RCs cannot be too short. One reason for this is that we
have to accommodate 20m long cold segments of vacuum pipes between the BS and the ITMs. This is
necessary to reduce the thermal radiation impinging on the cryogenic ITMs. Another reason is that we
need some length to fold the RCs. If the RCs are short, the folding angles have to be wide. This will
increase the astigmatism because the folding mirrors have curvature. For those reasons, we want the
RC lengths to be about 70m.

The next constraint is the range of the RF SB frequencies. We want them to be moderate, meaning
roughly in the range of 10MHz to 50ṀHz. In this frequency range, we can find PDs with reasonable
aperture size (∼1mm). If the frequency is much higher than 50MHz, we have to use smaller PDs, which
is more susceptible to beam jitter, and may take less power. If the frequency is too low, the laser noise
may be larger at the demodulation frequencies. Especially, we doubt that the intensity noise is at the
shot noise level in less than 10MHz.

The two RF SBs have to transmit the mode cleaner (MC). Therefore, the FSR of the MC has to be
a common measure of f1 and f2. The FSR, in turn determines the length of MC, as LMC = c/(2fFSR).
In order to keep the MC length in the reasonable range (order of 30m), the FSR cannot be too small.
This sets a severe constraint on the choice of the RF SB frequencies.

SRCL linear range

We explored all possible combinations of the RC lengths and RF SB frequencies by the algorithm
explained in A. After the extensive search, there are still many sets of parameters, which satisfy the
above mentioned constraints. In order to determine the final parameter set, we look at the linear range
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of the SRCL error signal. Since we will detune the SRC by adding an offset to the error signal, the
error signal has to have a reasonable slope at the detuned operation point. This situation is shown in
Figure 2.16. In the plot, the SRCL error signals are plotted as functions of SRCL detuning in terms of
the one-way phase change. There are three curves corresponding to different finesse of the PRC-SRC
coupled cavity. The blue curve is the one with the final parameter set we selected. At the center,
corresponding to the BRSE operation point, the blue curve has some slope. At the SRC detuning =
3.5 degrees, corresponding to the DRSE operation point and indicated by the black vertical line, the
curve still has some slope, though it is more gradual. On the other hand, the red curve has almost zero
slope at the DRSE operation point. Therefore, we cannot use this signal for controlling the SRC in
DRSE. The green curve has almost constant slope, but it is less steep than the blue curve, at least at
the BRSE operation point, meaning that the signal is weaker. Therefore, we prefer the blue curve.

The linear range of the SRCL error signal is roughly determined by the finesse of the PRC-SRC
coupled cavity for the f1 sideband. Since the reflectivities of the PRM and the SRM are already
determined by the optimization of the quantum noise shape, we are left with the Michelson reflectivity
for the f1 sideband to change the finesse of the coupled cavity.

The Michelson reflectivity Rm depends on the f1 frequency (f1) and the Michelson asymmetry (lm)
as Rm ∝ cos(2πf1 · lm/c), where c is the speed of light. When Rm is closer to the PRM reflectivity (0.9),
the effective reflectivity of the power-recycled Michelson seen from the SRC becomes lower. Therefore,
the finesse of the SRC gets smaller, resulting in a wider linear range.

Even though the blue curve in Figure 2.16 has a finite slope at the DRSE operation point, the second
derivative is non-zero there, i.e. the error signal is non-linear. This may non-linearity could produce
up- and down-conversions of error signals. This problem is examined in the appendixB. The conclusion
is that this effect is small enough to worry about.
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Figure 2.16: SRCL error signals for three different values of Rm. The horizontal axis is the detuning
of the SRC in terms of the one-way phase shift. The vertical axis is the signal from the POP port
demodulated at the f1 frequency. The vertical line shows the operation point of DRSE (3.5◦).
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Selected Length and Frequencies

The PRC length (Lprc) is set so that f1 = 7.5 × Fprc, where Fprc ≡ c/(2Lprc) is the FSR of the PRC.
Since the carrier is anti-resonant to the PRC cavity itself1, this condition makes the round trip phase
change of the f1 sideband in the PRC an integral multiple of 2π. The reflectivity of the Michelson part
for f1 is 0.383 (amplitude reflectivity). Therefore, f1 transmits through MICH and reaches SRM. The
SRC length (Lsrc) is the same as Lprc, thus satisfying f1 = 7.5 × Fsrc. In this case, the SRC length
is controlled to resonate the carrier. Therefore, SRC is anti-resonant for f1 by itself. However, there
is always a π/2 phase shift associated with the transmission of MICH. During the round trip of the
PRC-SRC coupled cavity, f1 experiences this phase shift twice amounting to a sign flip. Therefore, in
total, the round trip phase shift of the coupled cavity is an integral multiple of 2π.

For the f2 sideband, the MICH reflectivity is -1. The FSR of PRC satisfies f2 = 20×Fprc. Combined
with the fact that the carrier is anti-resonant and the MICH reflection induces a sign flip, f2 is resonant
in the PRC. Since it is perfectly reflected by MICH, the f2 sideband does not resonate in SRC.

The average length of MICH (the average distance between BS and ITMs) is set to 25m. Out of this
25m, 20m is used for the cryogenic radiation shield. The remaining 5m is used to absorb the Schnupp
asymmetry.

As explained in section 2.2.2, the two RF SBs get finite phase shifts as reflected by the ACs. Since we
fine adjusted the frequencies of f1 and f2, the effective length changes by these phase shifts are the same
for both of them. Thus, what we have to do is to change the PRC length (Lprc) and SRC length (Lsrc)
by dL = cφ1/(4πf1) = cφ2/(4πf2), where φx and ωx are the phase shift and the angular frequency of
the f1 or f2 sidebands.

2.3.3 Gouy phase change in the Recycling Cavities

The recycling cavities (RCs) are both folded by two additional mirrors to allow focusing of the beam
inside the cavities. The main purpose of the folding is to add an extra Gouy phase change to the beam
traveling inside the RCs. This additional Gouy phase prevents the HOMs from resonating in the RCs,
thus stabilizing the RCs in terms of the spatial modes.

Although HOMs are not welcome in most aspects of the interferometer design, the TEM10 and
TEM01 modes are utilized to generate the wavefront sensing (WFS) signals. When TEM10/TEM01
modes are excited by the mis-alignment of the arm cavities, they have to travel to the detection ports,
such as REFL. If the RCs are completely anti-resonant to those modes, these modes are greatly sup-
pressed by the time they reach the detection ports. Therefore, we do not want to suppress them too
much. As a compromise, we will set the one-way Gouy phase shift of the RCs to be less than 20 degrees.

In order to quantitatively see how much HOMs may be built up in the RCs, we used the simple
interferometer model explained in AppendixC. Using the model, we first calculate the field amplitudes
when the carrier in the TEM00 mode is injected from the back of the PRM. This calculation is repeated
for the f1 and f2 RF sidebands. We record those amplitudes to be used as the normalization factors
later. Now, we repeat the same calculations for higher order modes. We are particularly interested in
the optical power in the PRC, since it is where we want to suppress the circulation of the HOMs.

After calculating the HOM optical power for the carrier and the RF SBs in the PRC, we take the
ratio of the HOM power to the TEM00 power. The results are plotted in Figure 2.17. The horizontal
axis is the HOM order s, which is defined as s = n + m for HGnm modes and s = 2p + l for LGpl

modes. The vertical axis is the power ratio of the HOMs and the fundamental mode (TEM00). The
graph shows, for each mode order, how much power can be built up given the input beam is purely in
the corresponding HOM. Since the HOM components are much smaller than the fundamental mode in
reality, the actual power build up of HOMs will be much smaller than the values shown in the graph.

1Because the carrier gets extra phase shift of π from the arm cavities.
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Diffraction Loss

When calculating the power in the PRC, we incorporated the fact that the diffraction loss of the mirrors
is higher for HOMs because of their larger spatial extent. It was done by first calculating the diffraction
loss of the mirrors to each higher order mode. Actually, we only considered the diffraction losses in
the ITMs and ETMs, because on other mirrors, the beam spot sizes are small enough compared to the
mirror size, thus the diffraction loss is negligible.

The diffraction loss was calculated by integrating the power profile of HGnm or LGpl modes on
the mirror surface. Then we get a value A which is the fraction of the optical power captured by the
aperture of the mirror. The diffraction loss Ld is Ld = 1 − A. For the same mode order s, there are
different basis modes, e.g. HG30, HG21 and HG12 all belong to s = 3. We used the smallest value
of A in the family of HOMs to evaluate the worst case scenario. Assuming that the mirror’s intrinsic
reflectivity R and the transmissivity T satisfy R + T = 1, i.e. loss less, we get A · (R + T ) + Ld = 1.
Thus, the effective reflectivity and transmissivity of the mirror including the diffraction loss are A · R
and A · T respectively. We replace the TM reflectivities and transmissivities with those numbers when
calculating the field amplitudes for HOMs.

Gouy Phase Scan

Figure 2.17 was calculated using the one-way Gouy phase shift of 16.4 degrees for PRC (ηPRC) and 13
degrees for SRC (ηSRC). Now we will scan the values of the Gouy phase shift to find the optimal ones.
To do so, for each set of (ηPRC, ηSRC), we compute the PRC power for HOMs, as shown in Figure 2.17.
Then take the maximum of those values. The procedure is repeated by scanning the Gouy phase
shift values in the two-dimensional plane of (ηPRC, ηSRC). The results are shown in Figures 2.18 - 2.21.
By looking at Figure 2.21, which shows basically the maximum of Figures2.18 - 2.20, the area around
(ηPRC, ηSRC) = (16.5, 13.0) looks like a good candidate for the Gouy phase shifts. Zoom ups of the
region are shown in Figures 2.22 - 2.25. From those plots, we decided that the one-way Gouy phase shifts
of the RCs to be 16.4 degrees for PRC and 13 degrees for SRC.

DRSE

The above calculations are all done assuming the BRSE configuration. When the SRC is detuned, the
resonant conditions for the HOMs in the SRC are also changed. Mostly the f1 SB is effected by the
detuning. Figure 2.26 and Figure 2.27 show the results of the same Gouy phase scanning as Figure 2.21
and Figure 2.25, but the SRC is detuned. It is evident that the difference is very small.

Higher Order Modes in SRC

One more thing to check is the HOM resonances in the SRC. Since the f2 SB is perfectly reflected by
MICH, the SRC Gouy phase shift is not a concern for f2. The f1 SB resonates in the compound cavity
formed by the PRC and SRC, resulting in the strong correlation of the power in the PRC and SRC.
Therefore, it is sufficient to check the PRC power for this RFSB. The situation for the carrier is a bit
complicated. In the normal operation state, the fundamental mode of the carrier is not resonant in the
SRC. More specifically, the carrier is resonant in the SRC by itself. However, because the carrier is also
resonant in the arm cavities, the reflectivities of the ITMs flip the sign and the carrier becomes anti-
resonant to the SRC. Therefore, it does not make sense to the TEM00 power as a normalization factor.
Instead, we decided to take, for each HOM, the ratio of the power in the SRC with the designed ηSRC

and the power of the same HOM when the SRC is completely degenerated, i.e. ηSRC = 0. The results
are shown in Figure 2.28 and Figure 2.29 for the BRSE and DRSE cases respectively. To calculate the
ratio, we injected a beam from the back of the SRM and for each HOM, calculated the power in the
SRC with ηSRC = 13.0◦ and ηSRC = 0◦.
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Figure 2.17: HOM power ratio in the PRC: BRSE.
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Figure 2.18: The maximum HOM power ratio of the carrier in the PRC: BRSE.

22



10 12 14 16 18 20
Gouy Phase PRC [deg]

10

12

14

16

18

20
G

ou
y 

Ph
as

e 
SR

C
 [d

eg
]

f1 HOM Power in PRC [log10(PHOM/PTEM00)]

1.65

1.50

1.35

1.20

1.05

0.90

0.75

0.60

0.45

Figure 2.19: The maximum HOM power ratio of the f1 SB in the PRC: BRSE.

10 12 14 16 18 20
Gouy Phase PRC [deg]

10

12

14

16

18

20

G
ou

y 
Ph

as
e 

SR
C

 [d
eg

]

f2 HOM Power in PRC [log10(PHOM/PTEM00)]

1.65

1.50

1.35

1.20

1.05

0.90

0.75

0.60

0.45

Figure 2.20: The maximum HOM power ratio of the f2 SB in the PRC: BRSE.
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Figure 2.21: The maximum HOM power ratio of the total field in the PRC: BRSE.
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Figure 2.22: The maximum HOM power ratio of the carrier in the PRC, zoomed: BRSE.
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Figure 2.23: The maximum HOM power ratio of the f1 SB in the PRC, zoomed: BRSE.

15.6 15.8 16.0 16.2 16.4 16.6 16.8 17.0
Gouy Phase PRC [deg]

12.5

13.0

13.5

14.0

G
ou

y 
Ph

as
e 

SR
C

 [d
eg

]

f2 HOM Power in PRC [log10(PHOM/PTEM00)]

1.56

1.50

1.44

1.38

1.32

1.26

1.20

1.14

1.08

1.02

Figure 2.24: The maximum HOM power ratio of the f2 SB in the PRC, zoomed: BRSE.
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Figure 2.25: The maximum HOM power ratio of the total field in the PRC, zoomed: BRSE.
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Figure 2.26: The maximum HOM power ratio of the total field in the PRC: DRSE.
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Figure 2.27: The maximum HOM power ratio of the total field in the PRC, zoomed: DRSE.

According to Figure 2.28, lower order modes are well suppressed by making the SRC non-degenerated.
There is a peak at order 14. However, this is not a serious concern, because at this high order num-
ber, even the completely degenerated SRC has a low power build up gain, due to the diffraction loss.
Therefore, the actual power gain for this mode is not high. Figures 2.30 and 2.31 show the raw power
gain of the SRC when a beam is injected from the back of SRM. Even at the peak of mode order = 14,
the power gain is about 1, i.e. not amplified. Note that the SRC has a power gain of 25 for lower order
modes if it is completely degenerated.

Overall, the DRSE configuration tends to allow more HOMs to resonate in the SRC in the lower
mode order. This is because the detuning of the SRC by 3.5◦ cancels out with the Gouy phase change
of 13.0◦. Thus, the net detuning of the 1st order mode, for example, from the complete resonance is
9.5◦ instead of 13.0◦.

2.3.4 Radius of Curvature of the RC mirrors

The ROCs of the folding mirrors are set to realize the desired Gouy phase shift. There are many
combinations of the ROCs to achieve this. We selected a design which works as a beam reducing
telescope. In this design, the beam coming back from the arm cavities, having the beam radius of
3.5 cm, is focused by the concave PR3 mirror down to 4.5mm on the PR2. Then the convex PR2
collimates the beam, to have the same beam size on the PRM. This design is very convenient because
we do not have to handle large beams at the reflection (REFL) port and the POP2 port, which is
the beam transmitted through the PR2. 4.5mm beams can directly taken in and out of the vacuum
chambers without using large optical windows, which are expensive and tend to be fragile.

The geometry of the folding part is mainly determined by the constraints from the vacuum system,
such as the minimum separation between vacuum chambers. In order to minimize the astigmatism, we

2Pick Off in the Power recycling cavity
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Figure 2.28: The SRC HOM power build up compared to the completely degenerated SRC: BRSE.

0 2 4 6 8 10 12 14 16
HOM order

10-3

10-2

10-1

100

101

Po
w

er
 R

at
io

Figure 2.29: The SRC HOM power build up compared to the completely degenerated SRC: DRSE.
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Figure 2.30: The SRC HOM power build up gain: BRSE.
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Figure 2.31: The SRC HOM power build up gain: DRSE.
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chose a configuration which minimizes the folding angle under the constraints. The beam from PR3 to
BS has a large radius (3.6 cm). Therefore, PR2 has to be located far enough from the beam to avoid
beam clipping. On the other hand, we want to put PR2 as close to the beam as possible to minimize
the astigmatism. As a result, we located the edge of PR2 at 4 times the beam radius away from the
beam.

2.4 Output mode-cleaner system

An output mode-cleaner (OMC) filters out junk light coming out to the dark port of the interferometer.
The junk light here means any light other than the fundamental mode of the probe beam, namely the
average mode of the two arm cavities, at the carrier light frequency. In fact, it is rather reasonable
to say that any light other than the fundamental mode of the OMC will be filtered out. Thus, the
OMC should be designed first of all not to lose the signal fields at the transmission. It is then also
required for the OMC not to let higher-order modes come close to its resonance so that the unused light
contributes to increase shot noise. In addition to the higher-order spatial modes of the carrier light, the
RF sideband fields should be filtered out by the OMC, otherwise the sideband fields just contribute to
increase shot noise in the DC readout scheme. The g-factor of the OMC should be carefully chosen to
satisfy all of these conditions.

SRM

w=4mm

6.5m

6.2m

6.27m

MMT1

MMT2

   OMC 
(L=87cm)

IFO

Figure 2.32: Output mode-cleaner system.

The output mode-cleaner system consists of the OMC and the output mode-matching telescope
(OMMT). There will be also a suspended output Faraday Isolator between the first OMMT mirror
(OMMT1) and the SRM to avoid the back scattering into the interferometer. Figure 2.32 shows a
schematic view of the system.

For the OMC design, we should first simulate how much higher order modes will come out to the
dark port with reasonable values for the test mass RoCs. A simulation software FINESSE with the
modal decomposition method is used for the calculation. The mirror size is infinite in the simulation.
The maximum mode in the calculation is 5, which is just barely fine. It would be better to cross-check
the result with other codes preferably with finite-size mirrors and further higher order modes.
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The RoCs of the test masses are 1680 m for the ITMs and 1870 m for the ETMs (concave-concave
cavities). A 1 % error of the RoC is imposed in various ways: commonly in the ITMs (X and Y),
commonly in the ETMs, differentially in the ITMs, and differentially in the ETMs. The 1 % common
error of the RoCs can be compensated by tuning the distance of the SR2 and SR3 by about 14 cm.
This corresponds to the calculation result for power recycling. [16]. Hereafter we shall focus on the
differential error of the RoCs. The differential error causes a shot noise increase in two different ways.
One is for a loss of the signal field and the other is for an increase of higher-order modes. Figure 2.33
shows the simulation results. A remarkable difference between ITM errors and ETM errors can be seen
in each plot. The reason of the difference is still unknown and is to be investigated.
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Figure 2.33: Left: Signal loss due to the differential RoC errors of the test masses, and Right: Shot
noise increase due to the junk light caused by the differential RoC errors of the test masses.

Table 2.5 shows the amount of the light in Hermite Gaussian modes at the dark port before the
OMC. Here the optical loss of the test masses are 45 ppm in average and ±4 ppm imbalance is assumed
between the arm cavities. The finesse imbalance of 0.5 % and the differential RoC error of 1 % are
also assumed. The higher order modes and the RF sideband fields should be less than a few percent of
the reference light (TEM00 carrier light) after the OMC. Required suppression rates for RF sideband
TEM00, carrier light TEM20/02, and other modes are 80 dB, 70 dB, and 45 dB, respectively, which
corresponds to the shot noise increase of 2 %, 0.5 %, and < 0.5 %, respectively. With the optical loss
of 30 ppm being assumed for each OMC mirror, the finesse should be less than 1000 so that the signal
loss can be 2 % or less. The shot noise increment at the OMC is assumed to be 5 % or less in total.
Should the mirror RoC errors be 2 % instead, the amount of the second order modes would increase by
about a factor of 4.

TEM00 TEM20 TEM02 TEM40 TEM04 TEM22
RF 85mW 0.1mW 0.1mW 4µW 4µW 3µW

TEM00 TEM20 TEM02 TEM40 TEM04 TEM22
DC 1.0mW 8.9mW 8.9mW 30µW 30µW 20µW

Table 2.5: Amount of the light in each mode at the dark port before the OMC.

The length and the g-factor of the OMC should be carefully chosen not to let higher order modes
come close to the resonance. The longer the OMC, the harder to find a safe region where any mode is
far from the resonance. On the other hand, a sufficient length is necessary to reduce the RF sideband
TEM00 field. With the finesse of 800, the OMC should better be longer than 90 cm to suppress the RF
sideband by 80 dB. Figure 2.34 shows the frequency margin to the closest resonance of the higher order
modes up to the 8th mode. The 16.875 MHz RF sideband and its higher order modes are also included.
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Scanning through the OMC Gouy phase, we have found good regions at around 19 deg, 38 deg, 80 deg,
and 99 deg, and the 38 deg is the best in terms of the suppression rate of the 2nd order modes. The
second harmonics of the RF sideband, which is not included in the plot, turns out to come close to a
resonance, which can be well avoided by tuning the OMC length to be 87 cm.

38 40 42 44
Gouy phase HdegL

20

40

60

80

closest resonance�bandwidht

Figure 2.34: Frequency margin to the closest resonance of any higher order modes up to the 8th mode.
The black, red, orange, green and blue curves correspond to the OMC length of 90, 80, 70, 60, and
50 cm, respectively. The horizontal line at the center indicates the suppression rate of 45 dB.

Since the incident angle to the curved OMMTs is non-zero, the beam is elliptical and the mode
matching cannot be perfect with the spherical OMC mirrors. The Gouy phases for the x and y axes are
different by about 0.5 deg. With the chosen setup parameters, the Gouy phases for the x and y axes
are 37.7 deg and 38.3 deg, respectively. Table 2.6 shows the amount of the light fields after the OMC
and Table 2.7 shows the setup parameters for the output mode-cleaner system.

TEM00 TEM20 TEM02 TEM40 TEM04 TEM22
RF 4µW 4nW 4nW < 1nW < 1nW < 1nW

TEM00 TEM20 TEM02 TEM40 TEM04 TEM22
DC 980µW 100nW 100nW < 1nW < 1nW < 1nW

Table 2.6: Amount of the light in each mode at the dark port after the OMC.
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item value
SRM-OMMT1 length 6.5 m

OMMT1-OMMT2 length 6.2 m
OMMT2-OMC1 length 6.266 m
OMC round-trip length 1.74 m

OMMT1 RoC 34.7 m
OMMT2 RoC 34.7 m

OMMT1 incident angle 1.9 deg
OMMT2 incident angle 1.9 deg

OMC mirrors incident angle 6.7 deg
OMC1 RoC 7.2 m
OMC2-4 RoC flat

beam radius on OMMT1 4.1 mm
beam radius on OMMT2 4.3 mm
beam radius on OMC1 0.95 mm

power reflectivity of OMC1 99.6 %
power reflectivity of OMC3 99.6 %

OMC suspension Type-C
OMC material Aluminum

Table 2.7: Setup parameters of the output mode-cleaner system.
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Chapter 3

Length Sensing and Control Scheme

Figure 3.1: RF sideband resonant conditions and signal ports. POP is drawn at the transmission of
PR3 to avoid congestion of the diagram. However, POP is actually planned to be picked up from the
back of PR2 because the beam size is much smaller there.
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f1 16.880962MHz 3× fMC, PM
f2 45.015898MHz 8× fMC, PM
f3 39.388910MHz and 56.269873MHz 7× fMC and 10× fMC, AM

fMC 5.626987MHz MC FSR
LMC 26.6388m MC Length

Table 3.1: RF Sideband Frequencies

3.1 Overview

The length degrees of freedom to be controlled are DARM, CARM, MICH, PRCL and SRCL (see
appendix E for the definitions of the acronyms). These degrees of freedom are collectively called
canonical degrees of freedom in this document. DARM is sensed at the AS port by the DC readout
scheme. Other degrees of freedom are sensed by a variant of frontal modulation scheme. The input
laser beam is phase or amplitude modulated to generate RF sidebands. There are two RF sidebands,
which resonate in the central part (PRC, MICH, SRC) of the interferometer. The sideband resonant
conditions are shown in Figure 3.1. The f1 sideband resonates in the compound cavity of PRC-SRC.
The MICH reflectivity to the f2 sideband is chosen to be almost 100%. Consequently, f2 only resonates
in PRC. Optionally, we may add another RF sideband, f3, which does not enter the interferometer at
all. f3 is called a non-resonant sideband (NRS).

When operated in DRSE configuration, the detuning of the SRC is done by adding offset to the
error signal of SRCL. The required detuning of SRC is 3.5 degree in terms of the one-way phase shift of
SRCL, which corresponds to 10 nm shift of SRM position. The f1 sideband frequency is chosen to make
the resonance of f1 to SRC not too sharp, so that the detuned SRC can still produce a reasonable error
signal using f1. The SRCL error signal is plotted as a function of SRM position in Figure 2.16. The
operating point of DRSE has enough slope to produce strong error signal. However, the non-linearity
of the error signal is stronger at the DRSE operating point. Discussions on this non-linearity and other
issues with the offset detuning of SRC can be found in AppendixB.

The selected RF modulation frequencies are listed in Table 3.1. The mode cleaner has to transmit
the RF sidebands. For this reason, the FSR of the MC is chosen to be f2/8.

3.2 Simulation Conditions

The calculations shown in the following sections are all done by using a simulation tool called Optickle [8].
The interferometer model and simulation codes are available in the KAGRA svn at [9].

Arm Cavity Asymmetry

When performing simulations, we assumed the asymmetry of the arm cavity loss (round trip) to be
±30 ppm, while the average loss is 100 ppm per round trip. This rather high asymmetry corresponds to
about ±1.5% asymmetry of the finesse. As a consequence, the DC carrier power at the AS port without
the differential arm cavity length offset is about 4mW. We call this mis-match light or field, because it
is produced by the loss mis-match between the two arm cavities.

The mis-match light itself is useless as a local oscillator for the DC readout, because it is orthogonal
to the GW SBs. However, when combined with the DC field produced by the differential offset of the
arm cavity lengths (we call it offset light), the homodyne angle can be set to be other than 90 degrees.
By properly choosing the homodyne angle, we can perform the back action evasion (BAE) measurement,
which can beat the standard quantum limit (SQL). The default homodyne angle of KAGRA for BRSE
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is 58 degrees, which requires about 10mW of the offset light, corresponding to ±2 pm of DARM offset.
For BRSE, the homodyne angle is 45 degrees. The offset light is 4mW corresponding to ±1.3 pm of
DARM offset.

The amount of the loss asymmetry is not something we can precisely control. Therefore, the intensity
of the mis-match light may be significantly larger or smaller than 4mW. If the asymmetry is very large
and the mis-match field is too strong, we consider it a failure of the mirror manufacturing. We have
to avoid it by careful quality control of the mirror fabrication1. If the loss imbalance is too small, the
required offset light power to realize the BAE becomes very small. This makes the requirements for the
OMC very stringent, because the OMC has to reduce the RF SB and other junk fields well below the
small local oscillator field. One solution to this problem is to increase the loss of one of the mirrors by,
for example, slightly staining the surface. However, this is probably not a good idea and very difficult
to do in a controlled manner. It is very likely that we damage the mirror. Thus not recommended.
Another option is just to abandon the BAE. In this case, we lose 10 to 20Mpc of the inspiral range2.

PD

We all know that there is no good RF PD which can receive 1W of light power. In the simulation, the
DC light power falling on to any RF PD is limited to be equal to or smaller than 50mW by, if necessary,
inserting an attenuator, so that the shot noise estimates for the auxiliary DOFs are realistic.

3.3 Signal Name Convention

In this document, signal names follow the convention described here. A signal name consists of a port
name followed by an indicator of demodulation scheme connected with an underscore ( ). For example,
“REFL 1I” means a signal detected at the reflection port and demodulated at the f1 frequency in
I-phase. Another example is “AS DC”, which means a DC signal detected at the AS port.

Double demodulation may be used if we use the f3 sideband. In this case, a signal name looks like
“REFL 1DmQ”. This means a signal detected at the REFL port demodulated at f3-f1 frequency in
Q-phase. Double demodulation is always between f3 and one of the other SBs. Therefore, only one
number is specified. The letter “D” means double demodulation, “m” means f3 minus f1. In the case
of f3 plus f1, this letter will be “p”.

“REFL 1DmQ” is not a true double-demodulation, where the signal should be demodulated twice
at f3 and f1 frequencies. However, it carries similar information as the true double-demodulation.

3.4 Signal Extraction Ports

The default length sensing scheme for bKAGRA uses two phase modulated RF sidebands, f1 and f2.
The beat notes of these sidebands with the carrier are detected at the REFL and the POP ports to
extract necessary error signals. The signal sensing matrices are shown in Table 3.2 and Table 3.3. The
diagonal elements are the signals we plan to use as error signals. The shot noise of each signal is shown
in Table 3.4 and Table 3.5. The shot noise matrices are calculated by first dividing the signal strength
(in [W/m]) of each DOF at each signal port by the shot noise level (in [W/

√
Hz]) of the corresponding

signal port, then inverting the result, to get the displacement equivalent noise in the unit of [m/
√
Hz].

The CARM signal produces large non-diagonal elements to the PRCL and SRCL. This is because
the phase change of the carrier by CARM is usually much larger than that of the RF sidebands by
PRCL or SRCL. However, the CARM feedback loop can have a very large control gain because of the

1which is extreme difficult. We know it.
2Need to check the numbers.
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DARM CARM MICH PRCL SRCL

AS DC 1.0 3.3× 10−6 7.2× 10−4 1.8× 10−7 5.0× 10−5

REFL 1I 9.6× 10−3 1.0 5.0× 10−3 6.2× 10−2 3.0× 10−2

REFL 1Q 7.1× 10−3 2.6× 10−4 1.0 8.5× 10−2 2.5× 10−2

POP 2I 5.4× 10−2 5.7 1.8× 10−2 1.0 2.7× 10−4

POP 1I 1.8× 10−1 19.0 1.1× 10−1 2.1 1.0

Table 3.2: Normalized Sensing Matrix of LSC in the case of BRSE. Each row is normalized by the
diagonal element. The interferometer response was evaluated at 100Hz to create this matrix.

DARM CARM MICH PRCL SRCL

AS DC 1.0 6.6× 10−6 7.1× 10−4 5.8× 10−7 5.8× 10−5

REFL 2I 1.4× 10−2 1.0 4.0× 10−3 4.3× 10−2 1.5× 10−4

REFL 1Q 2.5× 10−1 1.3 1.0 6.5× 10−2 3.4× 10−2

POP 2I 7.7× 10−2 5.7 1.8× 10−2 1.0 1.5× 10−4

POP 1I 4.7× 10−1 32.8 1.7× 10−1 2.0 1.0

Table 3.3: Normalized Sensing Matrix of LSC in the case of DRSE. Each row is normalized by the
diagonal element. The interferometer response was evaluated at 100Hz to create this matrix.

very fast nature of the laser frequency feedback. We can rely on this fact to suppress the interference
of CARM to PRCL and SRCL (the gain hierarchy approach).

In REFL 1Q, the mixture of PRCL and SRCL to MICH is large. This does not happen when there
is no asymmetry in the interferometer. The ±30 ppm loss asymmetry, as described in section 3.2, makes
the CARM, PRCL and SRCL signals no longer be at exactly the orthogonal quadrature to the MICH
signal. We chose a demodulation phase which minimizes the coupling of CARM. In return, the PRCL
and SRCL signals became comparable to MICH. However, these signals cab be separated because the
lower right 3× 3 matrices of Table 3.2 and Table 3.3 are invertible.

If we use the f3 sideband, which is an AM non-resonant sideband, the sensing matrix looks like
Table 3.6 (BRSE). Because the carrier is not involved in the signal generation of MICH, PRCL and
SRCL, the large CARM interference disappeared in this case. So we don’t have to rely on the gain
hierarchy. However, in this configuration, we have to introduce a Mach-Zehnder interferometer at the
modulation stage to separate the AM generation path and the PM generation path. This is necessary to
avoid the generation of sub-sidebands at the double demodulation frequencies. The addition of Mach-

DARM CARM MICH PRCL SRCL

AS DC 6.7× 10−21 2.0× 10−15 9.3× 10−18 3.8× 10−14 1.3× 10−16

REFL 1I 1.0× 10−16 1.0× 10−18 2.0× 10−16 1.6× 10−17 3.3× 10−17

REFL 1Q 3.7× 10−14 1.0× 10−12 2.6× 10−16 3.1× 10−15 1.1× 10−14

POP 2I 2.8× 10−15 2.6× 10−17 8.5× 10−15 1.5× 10−16 5.5× 10−13

POP 1I 1.4× 10−15 1.3× 10−17 2.3× 10−15 1.2× 10−16 2.5× 10−16

Table 3.4: Shot noise matrix of LSC in the case of BRSE. The numbers represent the displacement
equivalent shot noise [m/

√
Hz]. The interferometer response was evaluated at 100Hz to create this

matrix.

37



DARM CARM MICH PRCL SRCL

AS DC 4.6× 10−21 6.9× 10−16 6.4× 10−18 7.9× 10−15 7.9× 10−17

REFL 2I 4.3× 10−16 5.8× 10−18 1.4× 10−15 1.4× 10−16 3.8× 10−14

REFL 1Q 7.2× 10−16 1.3× 10−16 1.8× 10−16 2.8× 10−15 5.3× 10−15

POP 2I 1.9× 10−15 2.6× 10−17 8.5× 10−15 1.5× 10−16 1.0× 10−12

POP 1I 1.1× 10−15 1.6× 10−17 3.2× 10−15 2.6× 10−16 5.3× 10−16

Table 3.5: Shot noise matrix of LSC in the case of DRSE. The numbers represent the displacement
equivalent shot noise [m/

√
Hz]. The interferometer response was evaluated at 100Hz to create this

matrix.

DARM CARM MICH PRCL SRCL

AS DC 1 4.1× 10−5 1.0× 10−3 4.8× 10−6 4.7× 10−6

REFL 1I 5.4× 10−3 1 3.9× 10−5 5.4× 10−3 4.5× 10−3

REFL 1DmQ 4.8× 10−3 2.5× 10−3 1 0.7 1.3× 10−3

REFL 2DmI 1.83× 10−3 8.3× 10−2 0.18 1 0.32
REFL 1DmI 2.5× 10−4 1.5× 10−2 2.4× 10−2 1.7 1

Table 3.6: Normalized Sensing Matrix of LSC for BRSE using the f3 sideband. Each row is normalized
by the diagonal element. The interferometer response was evaluated at 100Hz to create this matrix.

Zehnder may introduce additional noise. Moreover, the generation of AM sidebands is not as easy as
one might think. A simple AM generator wastes a lot of laser power [10]. A clever idea is proposed to
avoid this problem [10]. However, it is still at a proof-of-concept stage.

There is another potential problem with the f3 scheme. In this scheme, the carrier does not contribute
to the the signal generation of the central part. Therefore, it just increase the shot noise if present at
detection ports. At REFL, the amount of the carrier power returning from the interferometer depends
on the reflectivity matching of the PRM and the Fabry-Perot Michelson part. The reflectivity of the
FPMI depends heavily on the loss of the arm cavities, hence very difficult to precisely control. If the
matching is poor, a lot of carrier power will come back to the REFL port. This has a potential of
increasing the shot noise of the signals detected at REFL by a large factor.

For the above mentioned reasons, we do not employ the f3 scheme during the observation mode of
KAGRA. However, we can still use this scheme during the lock acquisition, where the noise is not so
important but the stability and robustness of the error signals is critical.

3.5 Loop Noise

3.5.1 Servo loop model

In general, the auxiliary degrees of freedom have larger shot noise than DARM. By using those signals
for mirror control, we are effectively injecting extra noise into the interferometer. Especially, MICH has
an unavoidable coupling to DARM by about 1/Finesse. Therefore, the shot noise of the MICH error
signal appears to DARM attenuated by this factor. This noise coupling mechanism is called loop noise
and one needs to pay close attention to this when designing an interferometer control scheme.

Figure 3.2 shows a block diagram of the servo loops for the interferometer control. The detector
matrix D converts the real DOF vector ~x, which represents the mirror displacements and other dynamic
elements in the interferometer, such as laser frequency, into a vector of error signals ~e in the canonical
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Figure 3.2: Block diagram of the feedback loops. The real DOF vector ~x contains the displacement of
each mirror and other dynamic degrees of freedom in the interferometer, such as laser frequency and
intensity. It is converted to the vector ~e of the error signals in the canonical DOFs by the detector
matrix D. All the matrices in the figure are frequency dependent.

DOFs. Then the sensing noise vector, ~ns, is added to the error signal vector. ~ns represents shot noise
and any other noise added at the sensing stage, such as PD noise.

D and ~ns are calculated by Optickle. The error signals are filtered by a feedback filter F and fed
back to the mirrors through the actuator matrix A, which converts feedback signals in the canonical
DOFs to the real DOFs of the interferometer. Then the disturbance vector ~nd is added before the
sensing matrix D. ~nd represents disturbances to the interferometer, such as the mirror displacement
noises and the laser frequency noise.

The DARM error signal is the first element of the error signal vector ~e. In the absence of gravitational
waves, ~e is written as,

~e = (I +G)−1 · ~ns + (I +G)−1 ·D · ~nd, (3.1)

G ≡ D ·A · (I + F ′) · F, (3.2)

where I is the identity matrix. The off-diagonal elements of (I+G)−1 are responsible for the loop noise
couplings.

The shot noise coupling by the control loops was calculated using the above formula. We assumed
the unity gain frequencies of the servo loops shown in Table 3.7.

BRSE DRSE

DARM 200Hz 200Hz
CARM 10kHz 10 kHz
MICH 50Hz 50Hz
PRCL 50Hz 50Hz
SRCL 50Hz 50Hz

Table 3.7: Control Loop UGFs

The loop noise contributions from the auxiliary degrees of freedom are shown for the BRSE case
in Figure 3.3 and Figure 3.4. The curves labeled Target are the target sensitivity. It is clear that loop
noise couplings from other degrees of freedom are larger than the target level.
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Figure 3.3: Loop Noise Coupling: BRSE
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Figure 3.4: Loop Noise Coupling: DRSE
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3.5.2 Feed forward

The loop noise coupling can be reduced by a technique called feed forward [11]. Its working principle
is the following. Taking MICH as an example, we can measure the transfer function from the motion
of BS3 to the DARM signal. Then we assume that the error signal of MICH is dominated by the shot
noise (or any sensing noise). This means that BS is moved by the shot noise through the feedback.
From the feedback signal, we know exactly how much the BS is erroneously moved. Therefore, we can
predict how much noise is injected from this BS motion to DARM with the knowledge of the above
mentioned transfer function. By feeding forward this information to DARM, we can subtract the loop
injected noise. The feed forward path is indicated in Figure 3.2 by F ′.

The performance of feed forward is measured by the accuracy of the subtraction. Feed forward gain
is defined as the inverse of the accuracy. If the accuracy is 1%, the feed forward gain is 100, which
means that the loop noise couplings can be reduced by a factor of 100.

In Figure 3.5and Figure 3.6, the loop noise couplings are shown when the feed forward is applied
with the gain of 100 to MICH, PRCL and SRC. With the feed forward, the loop noise couplings can be
reduced well below the DARM quantum noise.
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Figure 3.5: Loop Noise Coupling with Feed Forward: BRSE

3.6 PD Dynamic Range

The intrinsic noises of photo detectors is another important class of sensing noise. A PD always receives
some offset light, either in RF or DC depending on the type of PD. At some ports, these offset signals
can be very large. In this case, the dynamic ranges of the PD becomes an issue.

3The feedback point for MICH. Actually, we also move PRM and SRM by 1/
√
2 to compensate for the changes in

PRCL and SRCL.
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Figure 3.6: Loop Noise Coupling with Feed Forward: DRSE

Typically, a low-noise fast operational amplifier (op-amp) used for the current to voltage conversion
of a PD has a dynamic range of about 200 dB according to the catalog specifications [12]. However,
because of the slew rate limit, the actual dynamic range at RF is much smaller. Moreover, in order
to minimize the non-linearity of the detector response, we want to use the op-amps at a much smaller
signal level than the slew rate limit. Therefore, for the following analysis, we assume the dynamic range
to be 160 dB for RF PDs and 190 dB for a DC PD.

Once the dynamic range D is specified, the sensing noise, npd, of a PD, in terms of the equivalent
signal light power on the PD, can be expressed as npd = Pofs/D, where Pofs is the offset signal power
for the PD. Then we can simply replace ns in (3.1) with npd to calculate the loop noise couplings for
the PD noise.

Figure 3.8 and Figure 3.8 show the calculated PD noise couplings for BRSE and DRSE. The PD
noises are large in the DRSE mode, especially for MICH. It is because the SRC detuning changes the
relative phase of the f1 sidebands with the carrier so that they no longer form a pure phase modulation.
The result is constant large RF signals on the PDs for the signals using the f1 sidebands. Since the
PD noise is a kind of sensing noise, with the use of feed forward, it can be reduced. Figure 3.9 and
Figure 3.10 show the PD noise contributions after the feed forward is applied. Even for the DRSE case,
the noises are below the target sensitivity.
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Figure 3.7: PD noise coupling: BRSE.
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Figure 3.8: PD noise coupling: DRSE.
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Figure 3.9: PD noise coupling with feed forward: BRSE.
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Figure 3.10: PD noise coupling with feed forward: DRSE.
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Chapter 4

Noise Requirements

In this chapter, contributions of various noise sources, such as mirror displacement noise and laser
noises, to the DARM error signal are calculated to set the requirements to those noises. The formalism
of the calculation is basically the same for all the noise sources: Solving the equation (3.1) for ~nd and
plugging in the target sensitivity into the first element of ~e, which is the DARM error signal, we get the
critical noise levels for all the disturbances in ~nd. The critical noise level is defined as the amount of
noise which produces the same noise level as the target sensitivity at the DARM. Since there are many
noise sources, we require that contribution of each noise is 10 times smaller than the target sensitivity.
Assuming all the noises are uncorrelated, we can allow 100 different kinds of noise sources to present
before compromising the target sensitivity. Please note that all the noise requirements below include
the safety factor of 10.

4.1 Mirror Displacement Noise

One caveat of feed forward is that it can increase the displacement noise coupling of the auxiliary degrees
of freedom to DARM. Feed forward assumes that whatever you see in the error signal of an auxiliary
degree of freedom, say PRC, is sensing noise, i.e. not a real motion of the mirror. This assumption
is not valid in some frequencies. If the error signal reflects real motion of the mirror, this motion is
suppressed by the feedback. Feeding forward this error signal to DARM means that you are trying to
cancel the motion of the mirror (PRM) which is already suppressed by the (PRCL) feedback. The net
result of this is the injection of the displacement noise of the auxiliary degrees of freedom into DARM.

One can calculate the transfer functions from the motion of auxiliary degrees of freedom to DARM
with the feedback and the feed forward engaged. By requiring the displacement noise couplings to be a
factor of 10 below the quantum noise of DARM, we can deduce the requirements to the displacement
noise for each degree of freedom. The calculated displacement noise requirements are shown in Figure 4.1
(BRSE) and Figure 4.2. The current estimates of the auxiliary suspension (Type-B SAS) seismic noises
are plotted alongside. Except for at several mechanical resonances, the displacement noise requirements
are met.

4.2 Laser Noises

Contributions of the laser noises (frequency and intensity) are estimated by adding phase and amplitude
modulators before the PRM in the Optickle model. The frequency noise requirement is calculated from
the phase noise requirement by multiplying it with 2πf , where f is the frequency of interest. The
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Figure 4.1: Displacement noise requirements for auxiliary mirrors: BRSE
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Figure 4.2: Displacement noise requirements for auxiliary mirrors: DRSE
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amplitude noise can be converted to the relative intensity noise (RIN) just by multiplying with 21.

4.2.1 Frequency stabilization servo

The frequency noise stabilization servo will be a complex multiple loop system. A conceptual diagram
of the frequency stabilization system (FSS) is shown in Figure 4.3.

CARM

Laser

MC

Reference
Cavity

Figure 4.3: Conceptual diagram of the frequency stabilization system

At the beginning, the laser is locked to a rigid cavity called pre mode cleaner (PMC). The PMC
serves as the absolute reference at low frequencies, typically below a few Hz. Then the laser is locked
to a suspended MC. The error signal of the MC is fed back to the MC mirrors at low frequencies,
where the mirror displacement noise is large, and to the error point of the PMC at high frequencies.
Therefore, at high frequencies the laser frequency is locked to the MC length. Finally, the CARM used
as the absolute reference of laser frequency in the observation frequency band. The CARM error signal
is, again, fed back to the ETMs at low frequencies, and to the MC end mirror in the middle frequency
range. At very high frequencies (above 50kHz or so), the error signal will be added to the MC error
point, which is directly passed to the PMC error point.

Details of the FSS servo topology is yet to be designed. Therefore, in the next section, we treat
whole the input laser system, from the laser source to the output of the MC, as a black box. Then
we assume that the CARM error signal is fed back to the frequency actuator of this black box. The
feedback UGF is assumed to be 10 kHz. The frequency noise requirement calculated with this model is
equivalent to the frequency noise requirement to the MC output.

4.2.2 Frequency noise requirement

The frequency noise requirements with the safety factor of 10 are shown in Figure 4.4 and Figure 4.5. As
mentioned above, these are the frequency noise requirements to the MC output. The frequency noise
of the MC output is ultimately determined by the displacement noise of the MC mirrors (seismic and
thermal). Therefore, it is interesting to convert the frequency noise requirements to the displacement

1dP/P = 2 · dE/E
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noise requirements. Figure 4.6 and Figure 4.7 show these requirements alongside the estimated MC
suspension seismic noise.
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Figure 4.4: Laser frequency noise requirement at the output of the MC: BRSE

4.2.3 Intensity noise

The requirements on the relative intensity noise (RIN) of the laser are shown in Figure 4.8 and Figure 4.9.
Since the Optickle can simulate the radiation pressure properly, the calculated results include the noise
generation by the radiation pressure induced mirror motion.

4.3 RF Oscillator Noises

Phase and amplitude noises of the RF oscillators driving the phase modulators to generate the RF
SBs produce noises in the error signals of the auxiliary DOFs, which use the RF SBs for error signal
extraction. The feedback of those noises into the mirrors inject noises into DARM error signal, even
though it uses DC readout.

4.3.1 Phase Noise

It is a common practice to express the phase noise of an oscillator in terms of the single sideband (SSB)
phase noise. It is the power ratio of the carrier and the sideband which is generated by the phase noise
at a particular frequency offset from the carrier frequency. The unit is dBc. Figure 4.10 and Figure 4.11
show the phase noise requirements of the RF oscillators in terms of SSB phase noise.

Good commercially available oven controlled crystal oscillators (OCXOs) have SSB phase noise of
better than -150dBc. However, the requirement of DRSE (about -180dBc at a few tens of Hz) is
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Figure 4.5: Laser frequency noise requirement at the output of the MC: DRSE
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Figure 4.7: Displacement noise requirement for the MC suspension: DRSE
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Figure 4.9: Relative Intensity Noise (RIN) requirement: DRSE
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Figure 4.11: SSB Phase noise requirements: DRSE

extremely difficult to meet. One reason for the requirement being so stringent for DRSE is that, as
explained in section 3.6, the SRC detuning causes the conversion of the purely phase modulated f1 SB
into a mixture of amplitude and phase modulations. This AM creates offset in the error signals using
the f1 SB. Then the oscillator phase noise directly changes the amount of the offset. A possible solution
to this problem is to prepare the f1 SB as a mixture of PM and AM in the beginning. This idea is
discussed in appendixD.

4.3.2 Amplitude Noise

The requirements on the relative amplitude noise of the RF oscillators are shown in Figure 4.12 and
Figure 4.13. Please note that these are amplitude noise, not intensity.

4.4 Scattered Light Noise

A generic model of scattered light noise can be constructed as follows: A stray beam from the interfer-
ometer hits something, like a wall of a vacuum chamber. The surface of this object is vibrating so that
the reflected light from the surface gets some phase fluctuations. A small fraction of the light reflected
or scattered by this surface comes back to the interferometer. This scattered light field returning to
the interferometer is denoted by ESCL. Assuming the power spectrum density of the surface vibration
is A(ω)[m/

√
Hz], the phase fluctuation of ESCL is 2kA(ω), where k is the wave-number of light. Once

entered into the interferometer, ESCL propagates through the interferometer and interferes with the
other fields to create noises in the error signals.

The contributions of scattered light to the interferometer outputs are calculated with the Optickle
model by adding injection ports for scattered light at several locations. For example, in order to
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Figure 4.12: RF oscillator amplitude noise requirements: BRSE
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Figure 4.13: RF oscillator amplitude noise requirements: DRSE
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Figure 4.14: Scattered light requirements for the carrier: BRSE

simulate scattered light injection to the back of PRM, a low reflectivity pick-off mirror of 50 ppm is
inserted just before the main beam from the MC hits the back of the PRM. Then a light source for
simulating a scattered light field is added to the model. The beam from this source is passed through a
phase modulator and injected to the interferometer through the pick-off mirror. The transfer functions
from this phase modulator to various signal ports of the interferometer are calculated to estimate the
magnitudes of scattered light noise couplings.

The relative phase between the additional light source and the carrier field is important. In the real
interferometer, this is a random number. In the simulation, we injected the simulated scattered light in
two orthogonal phases relative to the carrier. Then we took the squared sum of the transfer functions
from the two injection phases to estimate the worst noise coupling.

The phase modulator explained above is a kind of disturbance to the interferometer. So it can be
included as an element of ~nd. Then the requirements on this disturbance can be calculated as described
in 4. Since our model includes the feedback and feed forward loops, the scattered light noise couplings
through the control loops of the auxiliary DOFs are automatically included in the results.

The scattered light can be at the carrier frequency or one of the RF SB frequencies. So we repeated
the simulation changing the frequency of the scattered light source. If the scattered light field with an
RF SB frequency enters the interferometer, it will not directly interfere with the GW SBs at the AS
port. Rather, it will disturb the error signals for the auxiliary DOFs. Through the feed back loops, the
scattered light induced disturbances appear in the DARM signal.

Figure 4.14 and Figure 4.17 show the requirements on the scattered light fields at the carrier frequency
entering from various parts of the interferometer. The meaning of the curves is the following: The
product of the field amplitude ESCL[

√
W] and the vibration amplitude A(ω)[m/

√
Hz] must be smaller

than the curves. Similar requirements can be calculated for scattered light fields with RF SB frequencies
and shown in Figure 4.15 to 4.19.

Figure 4.20 to Figure 4.25 show the coupling coefficients of the scattered light noise from various
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Figure 4.15: Scattered light requirements for the f1 RFSB: BRSE

100 101 102 103 104

Frequency [Hz]

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

F
ie

ld
 A

m
p
li
tu

d
e 

x
 V

ib
ra

ti
on

 [
√ W

·m
/√ H

z
]

BRSE SCL Requirements for f2

ETM HR

PRC

PRM AR

SRC

SRM AR

BS to ITM

ITM to BS

Figure 4.16: Scattered light requirements for the f2 RFSB: BRSE
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Figure 4.17: Scattered light requirements for the carrier: DRSE
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Figure 4.18: Scattered light requirements for the f1 RFSB: DRSE
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Figure 4.19: Scattered light requirements for the f2 RFSB: DRSE

Arm cavity (carrier) 250 kW Arm cavity (f1) 25mW Arm cavity (f2) 27mW
PRC (carrier) 515W PRC (f1) 7.3W PRC (f2) 1.8W
SRC (carrier) 107mW SRC (f1) 3.4W SRC (f2) 1.6 nW

SRC (carrier HOM) 230mW

Table 4.1: Light power in the various parts of the interferometer: BRSE

entry points of the interferometer to the DARM error signal. The unit may look strange, but it is
identical to SNXXX/DARM in [13]. Basically, it is the ratio of the scattered light transfer function and
the DARM transfer functions. These numbers are used by the auxiliary optics group to estimate the
scattered light noise.

4.4.1 Light power in the interferometer

It is necessary for the estimation of scattered light noises to know the power of the light fields in the
interferometer, because those numbers are the starting point of the scattered light noise calculation.
Table 4.1 and Table 4.2 show the light power in the various parts of the interferometer. Most of the
values were calculated by the Optickle model, while the higher order mode power was calculated using
Finesse, assuming ±1% differential ROC error of the arm cavity mirrors.
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Figure 4.20: Coupling coefficients of scattered light for the carrier: BRSE
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Figure 4.21: Coupling coefficients of scattered light for the f1 RFSB: BRSE
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Figure 4.22: Coupling coefficients of scattered light for the f2 RFSB: BRSE
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Figure 4.23: Coupling coefficients of scattered light for the carrier: DRSE
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Figure 4.24: Coupling coefficients of scattered light for the f1 RFSB: DRSE
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Figure 4.25: Coupling coefficients of scattered light for the f2 RFSB: DRSE
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Arm cavity (carrier) 250 kW Arm cavity (f1) 20mW Arm cavity (f2) 27mW
PRC (carrier) 515W PRC (f1) 5.8W PRC (f2) 1.8W
SRC (carrier) 60mW SRC (f1) 2.7W SRC (f2) 1.6 nW

SRC (carrier HOM) 230mW

Table 4.2: Light power in the various parts of the interferometer: DRSE
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Chapter 5

Alignment Sensing and Control
Scheme

5.1 Overview

The alignment sensing and control (ASC) scheme of bKAGRA has not yet fully determined. We plan
to use a combination of the wave front sensing (WFS) scheme and optical levers. Currently, we have
almost finished studying the WFS part with an Optickle model.

5.2 Soft and Hard Modes

The most important thing we have to consider about when designing ASC scheme is the radiation
pressure effect. The angular motion of one mirror makes other mirrors to move due to opto-mechanical
coupling. Especially, the high circulating power inside the arm cavity (∼380 kW) introduces strong
coupling between angular motions of ITM and ETM. So, in order to make it easier to diagonalize the
sensing matrix, the WFS signals are sensed in the soft-hard mode basis [5].

The soft mode is the mode which two cavity mirrors tilt anti-symmetrically and the radiation pressure
torque makes the pendulum mode of the test masses less stiff. The hard mode is symmetric mode and
the radiation pressure torque makes the pendulum mode stiffer. The opto-mechanical transfer functions
of the test masses are shown in Figure 5.1. Note that soft mode of yaw motion is unstable(the phase at
DC is -180 deg).

In order to estimate how radiation pressure shifts the resonant frequencies, we first fit the transfer
function with a simple pendulum transfer function. From the fitting, an equivalent momentum of
inertia (Ieq) and a mechanical restoring torque (kmech) is calculated. The soft and hard mode resonant
frequencies can be computed by

f =
1

2π

√
kmech + kopt

Ieq
, (5.1)

where kopt is the radiation pressure torque. kopt of the soft(hard) mode is negative(positive) and the
combination of kopt differ by the g-factors and the intra-cavity power. When kmech+kopt < 0, resonant
frequency is imaginary and angular motion is unstable. Resonant frequencies of the soft and hard modes
for negative and positive g-factor are listed in Table 5.1. As you can see from the table, the resonant
frequency of the yaw soft mode will be too unstable for the positive g-factors. The pitch soft mode will
also be unstable if mechanical restoring torque differed ∼ 30% from the suspension model.
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Figure 5.1: The transfer functions from the torque on the test mass to angle of the test mass(top:
pitch, lower: yaw). The blue curve shows the mechanical transfer function in the absence of radiation
pressure. The green and red curve show the opto-mechanical transfer functions of the soft mode and
hard mode.
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g-factor Pincav [kW]
pitch [Hz] yaw [Hz]

fmech fSOFT fHARD fmech fSOFT fHARD

negative
250

2.62

2.49 3.26

0.28

0.78i 1.95
380 2.41 3.55 0.98i 2.40

positive
250 1.77 2.75 1.90i 0.87
380 1.08 2.81 2.36i 1.05

Table 5.1: Resonant frequencies under radiation pressure. i represents the instability.

The strategy for the ASC scheme is to make the UGF of the control loop as low as possible (< 10Hz)
in order not to introduce the WFS shot noise. However, if the unstable frequency is high, we have to
make the UGF higher than that frequency to make it stable. This is the main reason why we didn’t
selected the positive g-factors.

5.3 Simulation Conditions

The simulations of the interferometer response including radiation pressure effects are done using
Optickle. This simulation is done for the negative g-factors of the arm cavities.

Arm Cavity Asymmetry

The Optickle model used for ASC simulation doesn’t include the arm cavity asymmetry for the sim-
plicity. The two arm cavities are completely identical and the DC power at AS port is completely dark.
So, the shot noise estimation for AS port is optimistic.

QPD

By inserting attenuators, the power impinging upon each QPD is adjusted to ∼ 50mW, except for the
AS port.

5.4 Signal Extraction Ports

The signal extraction ports are basically the same as the LSC scheme, but we also use the arm trans-
mitted ports (TRX and TRY). For each port, two QPDs are placed at different Gouy phases. The
suffixes used to identify the two are “A” and “B”.

The sensing matrix is shown in Figure 5.2. CS, CH, DS and DH in the sensing matrix mean,
“Common Soft”, “Common Hard”, “Differential Soft” and “Differential Hard” respectively. The Gouy
phases are optimized to minimize the degeneracy of the signals.

There is no good WFS sensing port for SR2, so the angular motions of SR2 should be controlled
by using an optical lever. Since the local control is not included in our model right now, SR2 isn’t
controlled at all in the following results.

5.5 Angular noise coupling to DARM

5.5.1 Structure of the ASC model

The structure of the ASC model is summarized in Figure 5.3. Notes on the each matrix are the following;
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CS CH DS DH BS PR3 PR2 PRM SR3 SR2 SRM

TRX_ADC

REFL_A1I

TRY_ADC

AS_A1Q

POP_A1Q

POP_A2Q

POP_ADC

REFL_B1I

POP_B1I

AS_BDC

1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 −0.00 −0.00 −0.00

0.20 1.00 0.00 0.00 −0.00 −0.01 −0.00 −0.01 −0.00 −0.00 −0.00

−1.00 −0.00 1.00 0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00 −0.00

0.00 0.00 0.20 1.00 0.00 −0.00 −0.00 −0.00 0.00 0.00 0.00

0.04 −0.05 1.49 −1.37 1.00 −0.02 −0.00 −0.00 −0.06 −0.01 −0.00

−0.65 −0.15 0.00 −0.00 0.35 1.00 0.11 0.05 −0.00 −0.00 −0.00

−0.15 −0.02 −0.00 0.00 0.09 0.24 1.00 0.42 −0.00 −0.00 −0.00

0.53 −0.03 0.00 −0.00 −0.21 −0.71 −0.08 1.00 −0.14 −0.02 −0.01

−0.97 0.00 −0.03 0.03 −0.17 0.55 0.06 −0.06 1.00 0.11 0.05

−0.01 0.01 0.36 −0.17 −1.44 −2.34 −0.28 1.93 2.35 0.28 1.00

Normalized WFS Sensing Matrix
(Gouy phases at POP A:−68.0, POP B:−61.4 REFL A:88.6, REFL B:−1.4, AS A:88.3, AS B:68.3, TR A:−64.1  deg)

Figure 5.2: Normalized WFS sensing matrix. Each row is normalized by the diagonal element. SR2 is
not controlled by the WFS.
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Figure 5.3: Structure of the ASC model.
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• IFO optical response D [W/rad] represents the amount of the signal from each mirror at each
probe. D is calculated by Optickle simulation (sigAC in Optickle) and it includes the radiation
pressure effects.

• Input matrix I is for reconstructing the error signals of the control DOFs. I is ideally computed
by taking an inverse of the sensing matrix, but the complete sensing matrix cannot be obtained
during the lock acquisition phase. So, in the simulation, we only used large elements in the sensing
matrix to compute I.

• Filter F is diagonal filter matrix for each DOF.

• DOF to MIRROR M is the base transformation matrix from DOFs to mirrors.

• Actuator A [rad/Nm] is diagonal actuator matrix for each mirrors. Actuator transfer functions
are calculated by VIS group and currently we are considering only of actuation from recoil masses.

• Radiation pressure effect M [rad/rad] is calculated by Optickle simulation (mMech in Optickle).
M is the transfer function matrix from each mirror motion to each mirror motion and it represents
the opto-mechanical coupling of the mirrors.

• Beam spot motion (BSM) matrix B [m/rad] is also calculated by Optickle simulation. B is the
transfer function matrix from each mirror motion to beam spot motion on each mirror.

• Seismic noise ~nseis [rad] is the angular motion of each mirror caused by the seismic noise and is
calculated by VIS group.

• Shot noise ~nshot [W] is calculated by DC power on each QPD. We are assuming the limiting noise
of each sensor is shot noise.

By using these matrices, residual angular motion and beam spot motion can be written as,

~θres = R(1 +Gmirror)
−1(~nseis +GmirrorD

−1~nshot), (5.2)

~dspot = B(1 +Gmirror)
−1(~nseis +GmirrorD

−1~nshot), (5.3)

where
Gmirrors = AMFID. (5.4)

The cavity length change caused by angular mirror motion is the product of the beam spot displace-
ment and the mirror angle. In the frequency domain, this will be a convolution of the two spectra,

δL(f) = dspot(f) ∗ θres(f) (5.5)

' dRMS
spot θres(f) + θRMS

res dspot(f). (5.6)

For the test masses, the length change produced by the angular motion directly couples to DARM.
For BS and recycling cavity mirrors, we assumed the coupling factor of π/(2F ) and 1/100 respectively.

5.5.2 Simulation results

The angular noise coupling to DARM is calculated using the formula presented above. We designed
the servo filters to meet the sensitivity. Basically, lower UGF gives lower angular noise coupling at
frequencies > 10Hz. But for the test mass yaw motion, we have to make the UGF at around 3Hz in
order to overcome the radiation pressure anti-spring. So, we put some extra gain at 0.04-0.05Hz where
there is a seismic noise peak to reduce the RMS of the beam spot motion. The UGFs of the servo loops
are listed in Table 5.2.

Figure 5.4 shows the angular noise coupling of each mirror to DARM. They are below the DARM
noise (bKAGRA design sensitivity) at frequencies > 10Hz.
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pitch yaw
CS, CH, DS, DH 0.06Hz 3Hz

other DOFs 0.1Hz 0.1Hz

Table 5.2: ASC control loop UGFs
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Figure 5.4: Angular noise coupling to DARM (top: pitch, lower: yaw). The dotted line shows bKAGRA
design sensitivity.
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Chapter 6

Lock Acquisition Scheme

6.1 Overview

Quick and robust lock acquisition is important for maintaining high duty factor. The lock acquisition
procedure of bKAGRA proposed here consists of three stages. First, the arm cavities are locked by green
lasers at off-resonant positions for the main laser carrier. Then the central part of the interferometer is
locked either by using the third harmonics demodulation signals or non-resonant sideband. Finally, the
arm cavities are brought to full resonance to the main laser by changing the relative frequency of the
green lasers to the main laser. After all the degrees of freedom are brought to the operation points, the
error signals are switched to the ones with good shot noise.

The control signals for the central part can be disturbed by the arm cavities if one of the RF
sidebands accidentally resonates in the arm cavities. Free hanging mirrors of the arm cavities move
around and randomly pass by the resonances of the RF sidebands. This makes the lock acquisition
very difficult and a non-deterministic process. For this reason, we will pre-lock the arm cavities at a
off-resonant position. The pre-lock position is off-resonant to the carrier because if pre-locked at the
full resonance, a huge increase of the carrier power induces a radiation pressure thrust to the mirrors
when the PRC is locked. To avoid this shock, the arms are first locked to off-resonance.

After locking the central part, the arm offset is slowly reduced to bring them to the full resonance.
During this process, the error signals to lock the central part may be affected. Especially, the single de-
modulation signals are strongly affected by the large change of the carrier power and phase. Therefore,
these signals are not suitable for the lock acquisition. We will use either the third harmonics demodu-
lation signals or the double-demodulation signals with NRS for the lock of the central part during the
lock acquisition.

6.2 Green Laser Pre-Lock

6.2.1 Overview

In order to lock the arms at off-resonance of the carrier, we will use phase locked green lasers. Two
frequency doubled 532 nm lasers are used. The seed lasers (1064 nm) for those green lasers are phase
locked to the main laser carrier with a PLL. Using this PLL, we can sweep the relative frequency of the
green lasers to the main laser.

The arm cavity mirrors are dichroic coated to have some reflectivities to 532 nm, forming a low
finesse cavity. Each arm cavity is locked to a green laser by the usual PDH scheme. By sweeping the
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green laser frequency relative to the main laser, the resonant condition of the arm cavities to the main
carrier can be changed smoothly.

The injection points of the green lasers are shown in Figure 6.1. The green laser beams are injected
from the back of PR2 (for X-arm) and SR2 (for Y-arm). PR2 is chosen over PR3 because the beam
size at PR2 is about 4mm, which is more manageable compared to 3.5 cm at PR3.

PR2 and PR3 are dichroic coated to have a good transmittance to 532 nm. PR3 and SR3 should
have high reflectivities to the green beam, whereas BS should have a high transmittance. Therefore,
the beam injected from PR2 mainly reaches the X-arm and the one from SR2 sees only the Y-arm. Of
course, the beam separation is not perfect, especially considering that it is difficult to put high spec
coatings for 532 nm keeping the coating performance for 1064 nm. Since we do not want to compromise
on the performance of the coatings for 1064 nm, we relaxed the requirements for 532 nm, so that the
coating company can optimize the coatings mainly for 1064 nm. The problem of the mixture of the
light coming back from X-arm and Y-arm can be mitigated by frequency shifting the two green lasers
by 100MHz or so.

Figure 6.1: Conceptual configuration of the green laser pre-lock. Green lasers are injected from the
back of PR2 and SR2. Two green lasers are phase locked to the main laser with a frequency offset of
about 100MHz.

6.2.2 Noise Analysis

In order to keep the arm cavities quiet enough so that they can be brought to the full resonances, the
relative fluctuations of the main laser frequency and the arm cavities have to be much smaller than the
line width of the arm cavities. Since CARM has two cavity poles, by the PRC and the ACs, the line
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width is very narrow (about 1Hz). If we require the ACs effective length fluctuation, seen from the
main laser, to be 1/100 of the resonance width, the RMS length fluctuations of ACs have to be kept
smaller than 0.33 pm. The green lock system has to be able to pre-lock the ACs with this stability. In
order to design such a system, a noise analysis of the green laser lock system was performed [14]. It was
found that the most stringent requirement is imposed on the main laser frequency noise out of the MC.

6.2.3 Third Harmonics Demodulation

One way to get error signals of the central part insensitive to the arm resonance is a method called
third harmonics demodulation (THD). In this scheme the REFL port signal is demodulated at the third
harmonics frequencies of the RF sidebands. The signal is produced by the beat between the second
harmonics of the upper (lower) RF sideband and the first order lower (upper) RF sideband. Since both
sidebands are not resonant to the arm cavities, when arm cavities are sufficiently close to the carrier
resonance, these sidebands are not affected by the arm cavity motion.

Although the first and second harmonics of the RF sidebands are not resonant to the arm cavity,
there is a contribution from the the third harmonics of the RF sideband to the THD signal. This is a
beat between the carrier and the third harmonics of the RF sideband. Therefore, there is still inevitable
coupling of CARM and DARM motion to the THD signals.

Figures 6.2 to 6.4 show the error signals of the central part plotted by varying the CARM offset from
2nm to 0. The signals are almost insensitive to the CARM offset. However, MICH signal is largely
affected by CARM when the offset is close to zero.

Because of the susceptibility of the MICH signal to the CARM offset, THD is not the default
lock acquisition scheme of KAGRA. However, an advantage of THD is its simplicity. No additional
modulator or Mach-Zehnder is necessary. We can try it by just adding PDs capable of detecting the
third order harmonics. The PD for 3 × f2 = 135MHz may be challenging. However, since this PD is
used only for lock acquisition, the noise requirement is not severe.
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Figure 6.2: THD MICH error signal with various CARM offset. Signal port is REFL, demodulated at
3× f1 in Q-phase.
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Figure 6.3: THD PRCL error signal with various CARM offset. Signal port is REFL, demodulated at
3× f2 in I-phase.
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Figure 6.4: THD SRCL error signal with various CARM offset. Signal port is REFL, demodulated at
3× f1 in I-phase.
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6.3 Non-Resonant Sideband for Lock Acquisition

Another way to produce robust signals for the central part during lock acquisition is the use of a non-
resonant sideband (NRS). The NRS is chosen not to be resonant to any part of the interferometer. So
it serves as a stable local oscillator for signal generation.

The NRS error signals of the central part with changing CARM offset are shown in Figures 6.5 to
6.7. As expected, the signals are not affected by CARM at all. We used f3 = 7 × fMC as the NRS
frequency for those plots.

The NRS scheme requires additional AM modulator to be introduced in the modulation stage. To
avoid the generation of sub-sidebands, which interferes with the double demodulation, we also have to
use a Mach-Zehnder to separate the AM path from the PM. This is a disadvantage of the NRS method.
Since the NRS is only used in the lock acquisition phase, we do not need a large AM. We may also
be able to close the AM path after the interferometer is locked, so that the Mach-Zehnder may not
introduce excess noise to the laser.
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Figure 6.5: NRS MICH error signal with various CARM offset. Signal port is REFL, demodulated at
|f3− f1| in Q-phase.
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Figure 6.6: NRS PRCL error signal with various CARM offset. Signal port is REFL, demodulated at
|f3− f2| in I-phase.
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Figure 6.7: NRS SRCL error signal with various CARM offset. Signal port is REFL, demodulated at
|f3− f1| in I-phase.
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Chapter 7

Optical Layout

7.1 Basic design

The exact locations and the orientations of the interferometer mirrors have to be determined to satisfy
the following criteria:

• X-arm and Y-arm are orthogonal.

• Beams hit the mirrors at the center.

• Recycling cavity lengths and the Schnupp asymmetry match the designed values including the
optical distance of the transmissive optics.

Since some optics have AR wedge, it is not a trivial task to trace the beams through the inter-
ferometer and find a configuration which satisfy the above conditions. Doing it manually is also an
error-prone process. We also have to track unwanted reflections from the AR surfaces to appropriately
damp the stray beams. This is also a daunting task. Therefore, we developed a Python library, called
gtrace, for tracing beam paths and the evolution of Gaussian beam parameters through the interferom-
eter. Detailed optical layout of KAGRA main interferometer is automatically generated by a Python
code given a set of interferometer parameters (distance between the mirrors, mirror properties etc) and
constraints.

The optical layout generation code and the generated CAD files are available in the KAGRA svn [7].

7.2 Wedge angle error tolerance

If the wedge angles of transmissive optics, i.e. BS and ITMs, are different from their designed values,
the beams do not propagate properly in the interferometer. We have to compensate for the error by
tweaking the position and angle of the BS and ITMs. With the SASs, we can move these mirrors by a
few mm without opening the vacuum. From this, we can set requirements to the wedge angle error [15].
The conclusion is that in order to make the required amount of adjustment to the positions of the BS
and ITMs less than a few mm, the error tolerance has to be about ±1%.

7.3 Tunnel Slope

One thing to be kept in mind here is the tunnel slope. Since the 3 km tunnels of KAGRA are slightly
tilted for water drainage, the two arms are not on a level plane. We decided that all the main interfer-
ometer optics be placed on the plane defined by the two arms. This plane is tilted with respect to the
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local gravitationally level plane. The optical layout generated by the above code is drawn on this tilted
plane. In the actual construction and the installation of the vacuum chambers, the optical layout has
to be projected from the tilted plane to the reference plane used for the construction.
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Chapter 8

Installation/Adjustment Procedure

The physical installation of the main interferometer components will be done by other subsystems, such
as suspension and mirror. After the initial installation of the mirrors, the distance between them (arm
length, PRCL, SRCL, Schnupp asymmetry) have to be checked.

The cavity lengths are checked by measuring the FSR of the cavities. The Schnupp asymmetry can
be measured by locking the arms one by one using the REFL port PDH signal, and measuring the
difference of the optimal demodulation phases. The g-factor of the arm cavities can be measured by
injecting a slightly mis-aligned secondary laser and check the frequency separation between resonances
of the TEM00 mode and the TEM10 or TEM01 modes. The finesse of the arm cavities must also be
measured.

After those measurements, the MC length should be fine adjusted to set the RF sideband frequencies
at a desirable location in the FSR of the arm cavities. Then the length of PRC and SRC will be adjusted
to resonate these sidebands. The ROC error of the PR3 (SR3) also has to be compensated by adjusting
the distance between PR2 and PR3 (SR2 and SR3), keeping the overall PRC (SRC) length the same [16].

Commissioning is almost a synonym of adjustments to the interferometer. Therefore, the whole
commissioning process is the adjustment process.
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Chapter 9

iKAGRA

9.1 Overview

iKAGRA is the first milestone of the two phase development of the KAGRA interferometer. The
optical configuration of iKAGRA is a Fabry-Perot Michelson interferometer. It will be operated at
room temperature and the test mass substrate will be fused silica.

The main purpose of iKAGRA is to operate a large interferometer as soon as possible to identify
potential problems associated with the facilities and other components in common with bKAGRA, so that
we can take earlier actions to address the discovered issues before starting the bKAGRA commissioning.
For this reason, there is no target sensitivity for iKAGRA. The focus is on locking and stably operating
the interferometer.

9.2 Changes from bKAGRA

9.2.1 Mirrors

The test masses of iKAGRA will be made of fused silica. The size of the mirrors will be 25 cm diameter
and 10 cm thick. The radius of curvatures of the mirrors will be the same as the bKAGRA TMs.
Because the index of refraction is different from sapphire, the wedge angle of the iKAGRA ITMs is
different from the bKAGRA TMs.

We will continue to use the other mirrors used in iKAGRA through bKAGRA.

9.2.2 Optical Layout

The differences in the optical layout of iKAGRA and bKAGRA are shown in Figure 9.1. The ITMs are
moved by 25m towards ETMs. The ETMs are moved by 35m towards ITMs. These iKAGRA TMs
will be installed in vacuum chambers different from the bKAGRA TMs so that the installation and
commissioning of Type-A SAS can be done in parallel with the iKAGRA commissioning. The chambers
for iKAGRA TMs will be used as auxiliary optics chamber, for example housing optical lever optics, in
bKAGRA.

Because ITM AR surfaces have a finite wedge angle, the beams traveling from the BS to the ITMs
are not perfectly orthogonal to each other1. Because the ITMs are moved farther away from the BS,

1Otherwise, the deflected beam by the AR wedge will not make a normal incidence to the HR surface
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Figure 9.1: Differences between the iKAGRA and bKAGRA optical configurations/layouts.

the beam spot position on the ITMs will be laterally shifted by a few cm. Therefore, the positions of
the ITMs will be shifted by the same amount2.

There are gate valves (GVs) separating the ITM chambers from the 3 km-long vacuum pipes. The
initial alignment of the arm cavities will be done while the ITMs are exposed to the air and closing
the GVs to keep the vacuum of the long segment. For this purpose, there is an optical window at the
center of each GV to allow the beam to pass through. If the lateral shift of the ITMs is too large, the
beam will not go through the optical window. In this case, we will move the pipe segments containing
the GVs by the same amount to center the beams on the windows. This will be done by preparing two
sets of anchor points for the necessary segments of the vacuum pipes.

The PRM will not be installed in iKAGRA. The folding mirrors, PR2 and PR3 will be installed.
The whole SRC will not be used in iKAGRA. The SRC part of the vacuum system will be separated
from the rest of the interferometer during iKAGRA. Then the SRC mirrors will be installed during the
iKAGRA commissioning. In order to get the AS beam of iKAGRA, a pick off mirror will be installed
either in the BS chamber or in a temporary chamber on the AS side of the BS chamber.

9.2.3 Mode Matching

We will use the same input mode-matching telescope (IMMT) both in iKAGRA and bKAGRA3. The
IMMT will be optimized for bKAGRA. Because the PRM will not be installed in iKAGRA, and the
positions of the arm cavities are different from bKAGRA, the mode matching of iKAGRA will be
degraded. Figure 9.2 shows the input mode matching of iKAGRA mapped by changing the positions of

2Currently, the wedge angle of the ITMs are still being adjusted to ease the handling of stray light. The value of this
lateral shift depends on the wedge angle, but a concrete number is not available yet. Still, we know that this will be a
few cm.

3Because we are lazy :-)
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DARM AS 1Q
CARM REFL 1I
MICH REFL 1Q

Table 9.1: Length sensing ports of iKAGRA

the IMMT mirrors centered around the optimized positions for bKAGRA. It is impossible to recover
the mode matching to a very good value, such as 99%, even by moving the mirrors by 40 cm. Therefore,
we will not attempt to re-optimize the IMMT. We will use the IMMT as is i.e. optimized for bKAGRA.
The mode matching for iKAGRA will be then about 87%. We found it acceptable from the experience
of TAMA4.
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Figure 9.2: Input mode matching of iKAGRA, mapped by changing the positions of the IMMT mirrors
from the optimized ones for bKAGRA.

9.2.4 Interferometer Control

We will use only the f1 sideband for the length control of iKAGRA. WFS will not be used, although
the installation of hardware and some tests may be performed.

There are three DOFs to be controlled in length. Sensing ports are listed in Table 9.1
There is no plan to use green lock system for iKAGRA. However, we will try to install it as soon as

possible. Therefore, the hardware may be installed during iKAGRA phase.

4The IMMT of TAMA, which used infamous off-axis parabolic mirrors, had poor quality. Thus the mode matching we
got was something like 95%. 87% is worse than this, but not terribly different.
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Appendix A

Recycling Cavity Length
Determination Algorithm

To be written.
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Appendix B

SRCL non-linearity

To be written.
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Appendix C

Static Model of the Interferometer

Most of the simulation works in this document are done using Optickle. However, our Optickle model
is highly complicated and the computation is not that fast. For some optimization works, which require
many iterations of simulation with slightly different parameters, we need a quicker simulation tool
even with some omission of details. The static model of the KAGRA interferometer, presented in this
chapter, is constructed for this purpose.

What does it do ? It performs basically the same task as Optickle’s sweep() function. This model
solves a set of field equations to get the DC fields inside the interferometer given a set of phase param-
eters. A phase parameter is one-way phase change a beam experiences while traveling a particular part
of the interferometer. A set of the phase parameters defines the operation state of the interferometer,
i.e. where the mirrors are with respect to the resonances. The output of the model is a set of DC optical
field amplitudes (complex numbers, thus containing the phase information too).

How is it implemented ? The model uses a simplified picture of the KAGRA interferometer as
shown in FigureC.1. The folding part is omitted. Φp, Φs, Φx, Φy, ΦX and ΦY represent the one-way
phase changes in particular part of the interferometer. For example, Φp is the phase change between the
PRM and the BS. By requiring the fields are in a steady state, the fields have to satisfy the following
equations:

Epb = e−iΦp (tpEin − rpEbp) (C.1)

Ebp = e−iΦp (rbsEyb + tbsExb) (C.2)

Ebx = e−iΦx (tbsEpb − rbsEsb) (C.3)

Exb = e−iΦx (rixEbx + tixE2x) (C.4)

Eby = e−iΦy (rbsEpb + tibsEsb) (C.5)

Eyb = e−iΦy (riyEby + tiyE2y) (C.6)

E1x = e−iΦX (−rixE2x + tixEbx) (C.7)

E2x = e−iΦX (−rexE1x) (C.8)

E1y = e−iΦY (−riyE2y + tiyEby) (C.9)

E2y = e−iΦY (−reyE1y) (C.10)

Ebs = e−iΦs (tbsEyb − rbsExb) (C.11)

Esb = e−iΦs (−rsEbs) (C.12)
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Figure C.1: Field definitions
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The solution to the above set of linear equations is a set of field amplitudes. For example, in order
to compute the carrier fields at the optimal operation point of the interferometer, you plug (Φp, Φs, Φx,
Φy, ΦX,ΦY) = (0, π/2, 0,0,0,0) into the above equations and solve them. If you want to simulate an
RF SB, the one-way phase change between the PRM and the BS will be Φp = Φp0 + 2πf1Lp/c , where
Φp0 is the phase change for the carrier, f1 is the modulation frequency, c is the speed of light and Lp

is the distance between the mirrors. All the other phase changes can be treated similarly. For higher
order modes, you add extra phase change n · η to each part of the interferometer, where n is the order
of the mode, η is the one-way Gouy phase change of the corresponding part of the interferometer.
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Appendix D

Mixed PM and AM for f1

To be written.
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Appendix E

Terminology

Table E.1: Terminology

AC Arm Cavity
AM Amplitude Modulation
AS Anti-symmetric port
Auxiliary DOF Length degrees of free-

dom other than DARM
Canonical DOF Collective name of DARM, CARM, MICH, PRCL and SRCL
CARM Common Arm Length
DARM Differential Arm Length
DOF Degrees Of Freedom
MC Mode Cleaner
MICH Michelson Part L shaped part of the in-

terferometer formed by
BS and two ITMs

MZ Mach-Zehnder
PM Phase Modulation
PD Photo Diode/Detector
POP Pick-off in the Power Recycling Cavity
POX Pick-off at the ITMX
POY Pick-off at the ITMY
QPD Quadrant Photo Diode/Detector
REFL Reflection port
RF SB RF Sideband
PRC Power Recycling Cavity
PRCL Power Recycling Cavity Length
SRC Signal Recycling Cavity
SRCL Signal Recycling Cavity Length
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Appendix F

Contributors

Followings are the people have contributed to the discussion of the main interferometer design.
Yoichi Aso (chair), Kentaro Somiya, OsamuMiyakawa, Yuta Michimura, Kazunori Shibata, Kazuhiro

Agatsuma, Erina Nishida, Chen Dan, Daisuke Tatsumi, Tomotada Akutsu, Kiwamu Izumi, Koji Arai,
Kazuhiro Yamamoto, Hiroaki Yamamoto, Masaki Ando.

Y. Michimura wrote section 5. All the other sections were written by Y. Aso. K. Somiya and O.
Miyakawa were deeply involved in the development of the LSC scheme. The PI calculation was done
by K. Shibata with the help of K. Yamamoto. The noise analysis of the green lock system was done by
D. Tatsumi and K. Arai. Chen Dan validated the code for the optical layout.
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