KAGRA Roadmap and Risk Management

Masaki Ando (Department of Physics, Kyoto University)

Outline

Master schedule and subsystem bottom-up plans
Progress evaluation
Risk Management

Master Schedule/Bottom-up plan

Update of the KAGRA construction schedule.

- Mainly because of delay in the excavation schedule.
- Good chance to refine the schedule.

Roadmap special working group

- Iteration between the project constraint and the bottom-up plan.
- Open discussions in the collaboration
 - \rightarrow Recommendation approved by EC (Jan. 2012).

Major milestones of KAGRA

Important Updates

•Updates from the previous schedule.

- Excavation end ~1 year delay
- Longer iKAGRA commissioning term
 - * 18 months after tunnel finish \rightarrow 21 months
- No Silica RSE step
 - New plan: iKAGRA \rightarrow Silica DRMI \rightarrow Sapphire RSE
- Minimized delay in observation start.

* First observation run March 2018 (end of FY2017) with bKAGRA full configuration.
* Noise hunting and tuning for full performance
→ Observation phase from Sept. 2018.

Progress Evaluation

 Schedule management system for quantitative evaluation of project progress. Progress evaluation by a 'Milestone scheme'. - Set ~10 milestones for each subsystem, picked up from a detailed schedule of each subsystem. - Status for the milestones will be checked in regular meetings, progress evaluation with ~20% resolution. - The status will be open for all the collaborators. - A software and network system : MS Project and Web server for it. The system are being prepared in SEO.

Progress evaluation system

🏉 プロジェクト センター -	Project Web App – Windows Internet Explorer										
🔆 🕞 🗢 🛅 http://g	vlogt.iorr. u-tokyo.ac.jp :13013/pwa/projects.aspx	🖌 🎸 🔀 😾 Yahoo! JAPAN	• ٩								
: ファイル(E) 編集(E) ま	示(V) お気に入り(A) ツール(T) ヘルプ(H)										
🙀 お気に入り 👍 ・ ページ (2) ・ セーフティ (3) ・ ツール (
100 プロジェクト センター - Project Web App											
サイトの操作 🖌 泰昭	ពលុះក្នុង		安東 正樹 🔸								
 新規 →	の作成 売自分のプロジェクトのチェックイン ④ 拡大 ス計画 つ タスクの更新禁止設定 ④ 縮小		7F 💋								
ポリストの更新 場づしジ プロジェクト	ェクト権限 🖳 プロジェクト サイト 🦷 プロジェクト 移動 ズー	トヘスクロール → ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	変更 プロジェクトの種類								
4	③ プロジェクト名 開始日 終了	1日 達成率 作 2012/02/12 2012/02/19	2012/02/26								
プロジェクト	LCGT-Progression 2010/03/25 2019.	/04/16 0% 4									
プロジェクト センター											
承認センター											
ワークフローの承認											

LCGT Schedule (Microsoft Project on Web server)

Currently, SEO and Subsystem Chiefs have access accounts.

Risk Management

Potential risks are important information
 for the project management.

- Effective distribution of project resources.
- Careful progress evaluation for major risk factors.
- Back-up plans to Minimize project delay.

Technical and schedule risks by each subsystem
 → Being summarized up by SEO.

KAGRA Risk Register

Collect risk information from subsystem.

- Total ~150 risk factors

 $(\sim 10 \text{ risks for each subsystem})$

- Risk ID,

Item, Explanation, Impact, Mitigation/Back-up plan Quantitative evaluation

Probability P 0 The probability is extremely low and will almost never occur.

- 1 The probability is not large and will probably not occur.
- 2 The probability is around 0.5.
- 3 The probability is large and will probably occur.

Seriousness S

- 0 It will not affect the successful completion of the project.
 - 1 It will to some degree affect the successful completion of the project.
 - 2 It will to some degree endanger the successful completion of the project.
 - 3 It will result in the failure of the project.

Degree of risk $R = P \times S$.

KAGRAリスク要要(KAGRA Flak Factors)

2012.3.12

	Т	サブシステム	項目	説明	インパクト	対応	Р	S	R	5.	lect	ion	情報元
(₹D	No	Subsystem	Item	Explenation	Impact	Design/back-up plan	d Dentahan	Sarioun Sarioun	Degree of Rick	M	κs	SM	Source
<u> </u>	+-									\square			
TUN	1 1	トンネル Tunnel (TUN)	静寂现境	期待しているほどの静寂環境が得ら れない。地部援動や多量の地下れに よる音響雑音、大気環境など。	当遺論の 安定度・感度の最化。	各サブシステムの性能向上。防音数 番等の充実。			0				380
TUN	2 1	TUN	配難経路の確保	X-andからの避難経路が確保されて いない。	重大な危険。				0	10		10	Int.Rev.201
TUN	3 1	TUN	掘削完成運れ	掲削完成遅れ	全体スケジュールに影響者り。	掲創業者がすべての責任を持つ。			0	10			Uchiyama Feb. 14
TUN	4 1	TUN	防振用縦穴位置す	防疫用の環穴規則位置が設計量からずれる。	全体設計に影響者り、	測量を正確に行う。防視グループは 余裕のある設計を行っておく。			0				Uchiyama Feb. 14
FOL-	1 2)施設 Facility							0 0 0				
VAC-	-1 3	重空 Vacuum (VAC)	真空リーク	真空 系のリーク	干渉計安定度・感度 の低下、ダクトに リークが起きた場合には、真空視場 に1ヶ月以上を要する。	ダクトに取り付けられたイオンボンブ 等は真空を破ることなく交換可能なよ めに、パルブを取り付けておく。			0				Drk.Rev.201 2 Sato Far. 1d
VAC-	2 3	VAC	イオンポンプの寿命	Ion pump replacement is once per 5 years when operated at 10–7 Pa hardinion gauges may har due co	not, serious; replacing without breaking ann vacuum.								Salto Feb. 14
VAC-	3 3	VAC	ゲージの乾隆	contamination for first one year operation, then the probability will	not serious; replacing without breaking ann vacuum.								Salto Feb. 14
VAC-	4 3	S VAC	ガスケッ ド等	Errodon of gasket and electric feed- through may happen: probability is unknown although humidity test has shown no errosion.	serious if the errodion takes place in the erro, one month is necessary for recovering vacuum.				0				Salto Feb. 14
VAC-	5 3	S VAC	彦板等の破構	View port crack or fracture may happne; the probability is much higher in a wholow of 200 mm in clameter, or more.	serious, one month is necessary for recovering vacuum, windows of 100 mm in clameter; or shorter; is preferrable.	修復後再度真空引きを行う。			0			10	Sato Feb. 14
VAC-	5 3	VAC	大規模画座リーク	大きな真空リーク。 具空慣りに直かれて耐量性帯から		●気料気作によるケード/\/レノの雨 始 をかせません。またしてなの分子			0			10	Drt.Rev.201
VAC-	7 3	VAC	▲土19頁(1800年) 料	の、カス族出・発檀・油脂性分子拡散 による嫌の汚染および祭内の圧力上 ■	干浄計感度の低下	具空サブクルーフによる使用体料。 骨品の査定、場合によっては、 が時。 別定を予め行なう。			0				Sako Feb. 18
├ ─	+								0			\vdash	

KAGRA Domestic Collaboration Meeting (April. 16 2012, Kashiwa, Chiba)

Recent Updates

Risk Management Activities

Collect risk information from subsystems (Feb. 2012 -).
Summarize them and present at PAB (Feb. 23).
Some suggestion from PAB members.

•Visit P. Grey (TMT sub-PM,) to hear about the TMT risk management (March 5).

- Simple is better (~200 risks at most)
- Categorize the risks (subsystem and phase)
- New risks are become formal after risk meetings.
- Risk meetings ~ every 3 months.
- Using Web-based system developed in TMT.
- •Updating the risk table.

Request to subsystem leaders

To summarize the schedule and risks is not a goal.

- Progress evaluation.
- Continuous update.

Please update the milestones

- No intervals,
- Proper timescale ~ 3 months scale
 Please update the risk registers
 - Proper risk items and quantities.
 - Recognize the risks continuously for the success.

Appendix

Major milestones of KAGRA

Example of Detailed Schedule

bLCGT configuration

Vacuum systems (- 2015.3)

LCGT Vacuum System

120123 VAC (YS)

iLCGT commissioning (- 2015.12)

bLCGT commissioning 1 (- 2016.9)

bLCGT1 Cryogenic test mass (DRMI, Cryo full system) full system test - VIS upgrade to Type-B for core optics ETM - Center interferometer (DRMI) - Cryogenic test mass with room-temp. test masses. -arn Sapphire, 23kg, 20K - Full test of cryogenic test-mass - Type-A isolator system (Type-A SAS + Cryo-system) - Cryostat + cryo-cooler ITM **Center IFO** (DRMI) MC PRM BS X-arm ETM ITM **Type-B** system Stack-B system SEM - Core optics (BS, RM ,...)

Silica, 10kg, 290K

- IP + GASF + Payload

- Stack for aux. optics

Test mass
Silica, 10kg, 290K
Seismic isolator
Stack + Type-B Payload

bLCGT commissioning 2 (- 2017.8)

Cryogenic operation (- 2018.3)

Tuning and observation (2018.4 -)

