

Radiation pressure noise measurement

K. Agatsuma

(National Astronomical Observatory of Japan) and T. Mori, D. Friedrich,

S. Sakata, S. Ballmer, O. Miyakawa, K. Numata, S. Kawamura

Contents

R&D for KAGRA

- Radiation pressure noise measurement
- Quantum efficiency measurement
- Misc.

Radiation pressure noise measurement

Objective and Scope of experiment

Future GW detectors will be limited by radiation pressure noise

- Objectives
 - Observe radiation pressure noise
 - Use of tiny mirrors
 - Reduce radiation pressure noise
 - measurement of ponderomotively squeezed vacuum fluctuations at the best homodyne angle
 - SQL not possible: thermal noise of a mirror is big in the current setup
- => contribute to large scale GW detectors including KAGRA
- Scope
 - Fabry-Perot cavities with very small mirrors and high Finesse

Conceptual design

- Main interferometer: Fabry-Perot Michelson interferometer with very small mirrors (20mg) and high Finesse (10000)
- Output light homodyne detected with local oscillator
- Observation and reduction of radiation pressure noise around 300Hz – 1kHz

Previous results

One Fabry-Perot cavity experiment

At high power, angular anti-spring effect caused by radiation pressure destroys the stability

- ♦ Radiation pressure actuates the torsion mode of small mirror
- Radiation pressure acts as angular anti-spring
- => In order to reach the designed intra-cavity power, an angular control is needed.

Opto-mechanical angular control

How to control a small mirror using radiation pressure

- Beam position on the end mirror is kept center of the mirror, by controlling the front mirror in angular direction.
- Motion of the end mirror is coupled with that of the front mirror through radiation pressure

Experimental setup

- Vacuum, Suspended table
- End mirror: Tiny mirror
- Front mirror: 1-inch mirror suspended by double pendulum
- Length of cavity: 80mm
- Monitoring motion of tiny mirror:
 Optical lever
- Angular control: Yaw direction

2012/Feb./4

KAGRA f2f meeting

Angler control demonstration

• Control is achieved

QPD: quadrant photo diode

- As control gain is increased, angular motion is suppressed
- Shift of resonance frequency is not confirmed yet.

(T. Mori, doctor thesis)

Angler control demonstration

summary

Recent product

Opto-mechanical angular control is achieved in Yaw direction.

Next step

- Confirmation of increase of intra-cavity power by angular control.
- Alignment control noise measurement.
 (estimation is already done by Dr. Sakata)
- Pitch motion control
- Frequency stabilization

Quantum efficiency measurement

Quantum efficiency measurement

Background

Squeezing level will be limited by the quantum efficiency(QE) of a photodiode(PD).

◆The accuracy of QE measurement is limited by the accuracy of the incident laser power.

Objectives

Measure the quantum efficiency of PD within 1% accuracy

- It correspond to make power meter with high accuracy
- => contribute to estimate an accurate squeezing level

Method

- Michelson interferometer with a tiny mirror
- => Tiny mirror is sensitive for changing input power (Application of the tiny mirror in RPN measurement)
- => Accurate measurement of the laser power (i.e. number of photon)
- => We can get an accurate quantum efficiency of a PD

Theory

			Institute for Cosmic Ray Research University of Tokyo
$QE = \frac{N_e}{N_p}$ Fine measurement of N_p lead to a high accuracy of QE.			<< Notation >> h: Planck constant N _p : Number of photons in input light m: Mass of small mirror c: Speed of light v: Laser frequency ω: Frequency of the intensity modulation
One photon $\frac{h\nu}{h\nu}$	Equation of motion $m\ddot{x} = \frac{2h\nu}{c}$ (Mechanical	response)	
	$\rightarrow d\widetilde{X} = -\frac{2h\nu N_P}{m\omega^2 c} \cdots (1)$	Resp (Opti	oonse of Michelson IFO cal response)
$\frac{h\nu}{2}$	$N_p = \frac{P}{h*v}$	dŽ	$\widetilde{K} = \frac{\lambda}{2\pi V_0} dV_{PD} \cdots (2)$

(1) + (2) = opto-mechanical response through radiation pressure

$$dP = rac{m * c * \omega^2 * \lambda}{4 * \pi * V_o} * dV_{PD}$$

An opto-mechanical response makes a new kind of power meter

С

Experimental setup

Displacement sensor: Michelson IFO Tow path: for shaking mirror (Yellow line) and for MI (Red line) Power modulation: AOM

2012/Feb./4

KAGRA f2f meeting

Displacement by shaken radiation pressure

Error contribution

Detailed formula of the laser power is

$$P = \frac{c\lambda}{4\pi H_m V_{pp} \alpha_{\rm m} \cos \phi} G_{\rm CL} \cdot T_{AH} \cdot V_f.$$
(4)

The propagation low of error (the standard deviation) is expressed as

$$\sigma_F = \sqrt{\sum_{j=1}^{s} \left(\frac{\partial F}{\partial X_j}\sigma_j\right)^2} \tag{5}$$

Using this equation and Eq.(4), the error of power is written as

Error estimations are in progress. The details will be talked in JPS on Mar. and GWADW on May.

Misc.

Member

- Prof. Kawamura transferred from NAOJ to ICRR
- Dr. T.Mori will transfer to a company by the next Apr.
- Dr. Daniel Friedrich has joined us. (from Dec. in the last year)

Move lab. from NAOJ to ICRR

★帮

 Moving date 27/Feb.--1/Mar.

The next building of ICRR

We continue to study RPN measurement in Kashiwa campus.

棚

Summary

R&D for KAGRA

- Radiation pressure noise measurement
- Opto-mechanical angular control is achieved in Yaw direction
 Quantum efficiency measurement
- Power measurement using radiation pressure is in progress.
 Misc
- Daniel has joined us.
- Move lab. from NAOJ to ICRR between 27/Feb. and 1/Mar.

Supplement slide

Design sensitivity

Laser power	200 mW
Injected laser power	120 mW
Finesse	10000
End mirror mass	20 mg
Diameter of end mirror	3 mm
Thickness of end mirror	1.5 mm
Front mirror mass	14 g
Reflectivity of end mirror	99.999 %
Reflectivity of front mirror	99.94 %
Optical loss	50 ppm
Beam waist of end mirror	340 μm
Mechanical loss of substrate	10 ⁻⁵
Mechanical loss of coating	4×10 ⁻⁴
Length of silica fiber	1 cm
Diameter of silica fiber	10 μm

Current sensitivity

- Sensitivity of interferometer obtained from voltage applied to coil to control the interferometer
- toward target RPN noise level,
 - ~10 times worse @ 100Hz
 - ~100 times worse @ 1kHz

- (classical) frequency noise of laser was dominating
 - Frequency stabilization needed
- Low laser power

