

## Purpose of OMC



(wSRM=4.0mm, wSR2=4.0mcm, wSR3=36mm, wITM=35mm,  $\eta$ SRC=20deg)

# Junk-light simulations



[shot noise calculated by **FINESSE**]

- Optickle includes radiation pressure
- FINESSE includes higher order modes



- A dummy SR-arm for reference
- A dummy OMC for reference
- Modal expansion

## Mirror RoC errors



[Shot noise increase due to junk light]



[Signal reduction for mode-mismatch]

#### <u>Shot noise increases in 3 ways</u>

- (i) Mode-mismatch due to commonmode RoC errors;
  - This can be solved by tuning the SRC telescope (~13cm). [cf. JGW-G1100553 (Agatsuma, Chen)]

#### (ii) Junk light increase;

- This can be somewhat reduced with the use of OMC.

(iii) Signal reduction;

- Influence is smaller than others.



\* TM loss: 41ppm/49ppm \* Finesse difference 0.5% \* RoC error 1% (differential)

| RF    |       |       |       |       |       | DC           |       |       |       |       |       |
|-------|-------|-------|-------|-------|-------|--------------|-------|-------|-------|-------|-------|
| TEM00 | TEM20 | TEM02 | TEM40 | TEM04 | TEM22 | TEM00        | TEM20 | TEM02 | TEM40 | TEM04 | TEM22 |
| 85mW  | 0.1mW | 0.1mW | 4uW   | 4uW   | 3uW   | <u>1.0mW</u> | 8.9mW | 8.9mW | 30uW  | 30uW  | 20uW  |



#### **Requirements**

(i) Signal loss in the OMC < ~1% -> finesse ~ 520 (30ppm/mirror)

(ii) RFSB reduction of 80dB+ -> Lomc > 85cm

 (iii) 2<sup>nd</sup> HOM reduction of 60dB+
 -> OMC Gouy phase ~ 45deg and finesse ~ 1000+

(iv) Other HOMs far from reso. -> Good Gouy phase ~ 19or99deg (MMT length: 4m, 10m)

## <u>Comparison with aLIGO</u>

~ 2 reasons why requirements are so hard for KAGRA ~ (1) SB freq is 16.875MHz (aLIGO's is 45MHz) -> RFSB reduction rate is ~6 times smaller.

(2) Back-action evasion readout



KAGRA's sensitivity is limited by quantum noise, so BAE is important. [238Mpc->218Mpc (DRSE), 206Mpc->196Mpc (BRSE)]

~90deg for aLIGO; ~64deg for KAGRA (BRSE)

aLIGO adds more offset and the DC light at dark port is ~40mW, while KAGRA's is 1~4mW to realize BAE.

## Summary and misc.

- OMC design is ongoing
- BAE is a bit challenging but is critical to lose it ~We'll certainly give it up if the loss imbalance is < 4ppm.
- Some alternative ideas:
  ~double OMC, reflective OMC, balanced homodyne, etc.
- MMT-OMC experiment will start at TITech ~Daniel Friedrich will come and help us.



## <u>Supplementary slides</u>

#### Output optics (

Output MMT

OMC

#### <u>Scope</u>

Establish the DC readout scheme that realizes BAE w/excess shot noise of less than 5%.

#### <u>Components of output optics</u>

output MMT, OMC module, control system, PD (refl, trans), beam dumper,

#### <u>Interface</u>

MIR: surface error requirement of TMs VAC/FCL: MMT length VIS: OMC suspension design MIF: modulation depth/freq, DC readout

### With 2% RoC errors

\* TM loss: 41ppm/49ppm \* Finesse difference 0.5%

| RF    |       |       |       |       |       | DC           |       |       |       |       |       |
|-------|-------|-------|-------|-------|-------|--------------|-------|-------|-------|-------|-------|
| TEM00 | TEM20 | TEM02 | TEM40 | TEM04 | TEM22 | TEM00        | TEM20 | TEM02 | TEM40 | TEM04 | TEM22 |
| 85mW  | 0.1mW | 0.1mW | 4uW   | 4uW   | 3uW   | <u>1.3mW</u> | 42mW  | 42mW  | 43uW  | 43uW  | 28uW  |



#### **Requirements**

(i) Signal loss in the OMC < ~1% -> finesse ~ 520 (30ppm/mirror)

(ii) RFSB reduction of 75dB+ -> Lomc > 85cm

 (iii) 2<sup>nd</sup> HOM reduction of 70dB+
 -> OMC Gouy phase ~ 45deg and finesse ~ 3000+

(iv) Other HOMs far from reso. -> Good Gouy phase ~ 19or99deg

## <u>Confirmation of the accuracy</u>

| highest mode | TEMOO     |  |  |  |  |
|--------------|-----------|--|--|--|--|
| 1            | 0.0001954 |  |  |  |  |
| 3            | 0.0016304 |  |  |  |  |
| 5            | 0.0042656 |  |  |  |  |
| 7            | 0.0056478 |  |  |  |  |
| 9            | 0.0058341 |  |  |  |  |
| 11           | 0.0058838 |  |  |  |  |
| 13           | 0.0058732 |  |  |  |  |
| 15           | 0.0058757 |  |  |  |  |
| 17           | 0.0058744 |  |  |  |  |
| 19           | 0.0058739 |  |  |  |  |

We should better calculate up to at least the 7<sup>th</sup> mode. It was 5 for the calculations shown in the slides, though.