Output mode-cleaner

LCGT f2f meeting Feb. 2012

Tokyo Inst of Technology
Kentaro Somiya

Purpose of OMC

[Output Optics]

with junk light (unfiltered)

Photo-detector

- (i) Clean-up of the carrier light [local oscillator for DC readout]
- (ii) Removal of 16.875MHz SB

(wSRM=4.0mm, wSR2=4.0mcm, wSR3=36mm, wITM=35mm, η SRC=20deg)

Junk-light simulations

[shot noise calculated by **FINESSE**]

- Optickle includes radiation pressure
- · FINESSE includes higher order modes

Check parameters with Optickle

(DARM offset)

HOM simulation by FINESSE

(Tuned RSE shot noise)

Calculate junk light at dark port

- A dummy SR-arm for reference
- · A dummy OMC for reference
- Modal expansion

Mirror RoC errors

[Shot noise increase due to junk light]

[Signal reduction for mode-mismatch]

Shot noise increases in 3 ways

- (i) Mode-mismatch due to common-mode RoC errors;
 - This can be solved by tuning the SRC telescope (~13cm). [cf. JGW-G1100553 (Agatsuma, Chen)]
- (ii) Junk light increase;
 - This can be somewhat reduced with the use of OMC.

(iii) Signal reduction;

- Influence is smaller than others.

OMC design

- * TM loss: 41ppm/49ppm
- * Finesse difference 0.5%
- * RoC error 1% (differential)

RF					DC						
TEM00	TEM20	TEM02	TEM40	TEM04	TEM22	TEM00	TEM20	TEM02	TEM40	TEM04	TEM22
85mW	0.1mW	0.1mW	4uW	4uW	3uW	<u>1.0mW</u>	8.9mW	8.9mW	30uW	30uW	20uW

(L=0.5m,0.6m,0.7m,0.8m,0.9m)

[Astigmatism -> ~1deg Gouy phase diff in X/Y]

Requirements

- (i) Signal loss in the OMC < ~1%
 - -> finesse ~ 520 (30ppm/mirror)
- (ii) RFSB reduction of 80dB+
 - -> Lomc > 85cm
- (iii) 2nd HOM reduction of 60dB+
 - -> OMC Gouy phase ~ 45deg and finesse ~ 1000+
- (iv) Other HOMs far from reso.
 - -> Good Gouy phase ~ 19or99deg

Comparison with aLIGO

~ 2 reasons why requirements are so hard for KAGRA ~

- (1) SB freq is 16.875MHz (aLIGO's is 45MHz)
 - -> RFSB reduction rate is ~6 times smaller.
- (2) Back-action evasion readout

KAGRA's sensitivity is limited by quantum noise, so BAE is important. [238Mpc->218Mpc (DRSE), 206Mpc->196Mpc (BRSE)]

~90deg for aLIGO; ~64deg for KAGRA (BRSE)

aLIGO adds more offset and the DC light at dark port is ~40mW, while KAGRA's is 1~4mW to realize BAE.

Summary and misc.

- OMC design is ongoing
- BAE is a bit challenging but is critical to lose it
 ~We'll certainly give it up if the loss imbalance is < 4ppm.
- Some alternative ideas:
 ~double OMC, reflective OMC, balanced homodyne, etc.
- MMT-OMC experiment will start at TITech
 Daniel Friedrich will come and help us.

Supplementary slides

Output optics

Scope

Establish the DC readout scheme that realizes BAE w/excess shot noise of less than 5%.

Components of output optics

output MMT, OMC module, control system, PD (refl, trans), beam dumper,

Interface

MIR: surface error requirement of TMs

VAC/FCL: MMT length

VIS: OMC suspension design

MIF: modulation depth/freq, DC readout

Output MMT

OMC

With 2% RoC errors

* TM loss: 41ppm/49ppm * Finesse difference 0.5%

RF						DC						
TEM00	TEM20	TEM02	TEM40	TEM04	TEM22	TEM00	TEM20	TEM02	TEM40	TEM04	TEM22	
85mW	0.1mW	0.1mW	4uW	4uW	3uW	<u>1.3mW</u>	42mW	42mW	43uW	43uW	28uW	

(L=0.5m,0.6m,0.7m,0.8m,0.9m)

[Astigmatism -> ~1deg Gouy phase diff in X/Y]

Requirements

- (i) Signal loss in the OMC < ~1%
 - -> finesse ~ 520 (30ppm/mirror)
- (ii) RFSB reduction of 75dB+
 - -> Lomc > 85cm
- (iii) 2nd HOM reduction of 70dB+
 - -> OMC Gouy phase ~ 45deg and finesse ~ 3000+
- (iv) Other HOMs far from reso.
 - -> Good Gouy phase ~ 19or99deg