## Output mode-cleaner

LCGT f2f meeting

Feb. 2012

Tokyo Inst of Technology<br>Kentaro Somiya



-


## Purpose of OMC



SRM: R=305m
to OMMT and OMC
[Output Optics]

(i) Clean-up of the carrier light [local oscillator for DC readout]
(ii) Removal of 16.875 MHz SB

## Junk-light simulations



[shot noise calculated by FINESSE]

- Optickle includes radiation pressure
- FINESSE includes higher order modes

Check parameters with Optickle
(DARM offset)

HOM simulation by FINESSE
$\sqrt{\square}$ (Tuned RSE shot noise)
Calculate junk light at dark port

- A dummy SR-arm for reference
- A dummy OMC for reference
- Modal expansion


## Mirror RoC errors


[Shot noise increase due to junk light]

[Signal reduction for mode-mismatch]

## Shot noise increases in 3 ways

(i) Mode-mismatch due to commonmode RoC errors;

- This can be solved by tuning the SRC telescope ( $\sim 13 \mathrm{~cm}$ ). [cf. JGW-G1100553 (Agatsuma, Chen)]
(ii) Junk light increase;
- This can be somewhat reduced with the use of OMC.
(iii) Signal reduction;
- Influence is smaller than others.


## OMC design

* TM loss: 41ppm/49ppm
* Finesse difference 0.5\%
* RoC error $1 \%$ (differential)

| RF |  |  |  |  | DC |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TEM00 | TEM20 | TEM02 | TEM40 | TEM04 | TEM22 | TEM00 | TEM20 | TEM02 | TEM40 | TEM04 | TEM22 |
| 85 mW | 0.1 mW | 0.1 mW | 4 uW | 4 uW | 3 uW | 1.0 mW | 8.9 mW | 8.9 mW | 30 uW | 30 uW | 20 uW |

 ( $L=0.5 \mathrm{~m}, 0.6 \mathrm{~m}, 0.7 \mathrm{~m}, 0.8 \mathrm{~m}, 0.9 \mathrm{~m}$ )
[Astigmatism -> ~1deg Gouy phase diff in X/Y]

## Requirements

(i) Signal loss in the OMC < ~1\%
-> finesse ~ 520 (30ppm/mirror)
(ii) RFSB reduction of $80 \mathrm{~dB}+$ -> Lomc > 85 cm
(iii) $2^{\text {nd }} \mathrm{HOM}$ reduction of $60 \mathrm{~dB}+$
-> OMC Gouy phase ~ 45deg and finesse ~ 1000+
(iv) Other HOMs far from reso.
-> Good Gouy phase ~ 19or99deg

## Comparison with aLIGO

~ 2 reasons why requirements are so hard for KAGRA ~
(1) SB freq is 16.875 MHz (aLIGO's is 45 MHz )
-> RFSB reduction rate is $\sim 6$ times smaller.
(2) Back-action evasion readou $\dagger$


KAGRA's sensitivity is limited by quantum noise, so BAE is important.
[238Mpc->218Mpc (DRSE), 206Mpc->196Mpc (BRSE)]
~90deg for aLIGO; ~64deg for KAGRA (BRSE)
aLIGO adds more offset and the DC light at dark port is $\sim 40 \mathrm{~mW}$, while KAGRA's is $1 \sim 4 \mathrm{~mW}$ to realize BAE.

## Summary and misc.

- OMC design is ongoing
- BAE is a bit challenging but is critical to lose it $\sim$ We'll certainly give it up if the loss imbalance is < 4ppm.
- Some alternative ideas: ~double OMC, reflective OMC, balanced homodyne, etc.
- MMT-OMC experiment will start at TITech ~Daniel Friedrich will come and help us.


## Supplementary slides

## Output optics

Scope
Establish the DC readout scheme that realizes BAE w/excess shot noise of less than 5\%.


Components of output optics
output MMT, OMC module, control system, PD (refl, trans), beam dumper,

Interface
MIR: surface error requirement of TMs
VAC/FCL: MMT length
VIS: OMC suspension design
MIF: modulation depth/freq, DC readout

Output MMT

OMC

## With 2\% RoC erpors * тм loss: 41ppm/49ppm

* Finesse difference 0.5\%

| RF |  |  |  |  | DC |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TEM00 | TEM20 | TEM02 | TEM40 | TEM04 | TEM22 | TEM00 | TEM20 | TEM02 | TEM40 | TEM04 | TEM22 |
| 85 mW | 0.1 mW | 0.1 mW | 4 uW | 4 uW | 3 uW | 1.3 mW | 42 mW | 42 mW | 43 uW | 43 uW | 28 uW |


[Astigmatism $\rightarrow \sim 1 \mathrm{deg}$ Gouy phase diff in $\mathrm{X} / \mathrm{Y}$ ]

## Requirements

(i) Signal loss in the OMC $<\sim 1 \%$
-> finesse ~ 520 (30ppm/mirror)
(ii) RFSB reduction of $75 \mathrm{~dB}+$ -> Lomc > 85 cm
(iii) $2^{\text {nd }} \mathrm{HOM}$ reduction of $70 \mathrm{~dB}+$
-> OMC Gouy phase ~ 45deg and finesse ~ 3000+
(iv) Other HOMs far from reso.
-> Good Gouy phase ~ 19or99deg

