Parametric Instability in the bKAGRA Arm Cavity

University of Tokyo,
Kazunori SHIBATA

Outline

I. Background:Why consider the PI?
2. Introduction:What is the PI?
3. Strategy: What and how to calculate
4. Result
5. Discussion
6. Conclusion

Detail report:JGW-TI200787

Background: Why consider the PI? (1)

- Curvatures(g-factors) was not determined yet.
- There are 2 candidates for g-factor(a set of ITM/ETM curvatures)

Negative g-factor set ITM curvature: $R_{1}=1.68 \mathrm{~km}$. ETM curvature: $R_{2}=1.87 \mathrm{~km}$

Positive g-factor set
ITM curvature: $R_{1}=14 \mathrm{~km}$
ETM curvature: $R_{2}=7.5 \mathrm{~km}$ $\mathrm{PI}=$ Parametric Instability

Background: Why consider the PI? (2)

- The negative g-factor set is said to be better in the ASC report [I].
- But it is known that for the negative g-factor set, the parametric instability (PI) might become a serious problem.
[I] Michimura's talk (last f2f in Aug. 201 I): JGW-G I I 00533

Introduction: What is the PI? (1)

- In the FP cavity, the optical power in the cavity becomes enormous.
- Elastic modes scatter the fundamental mode E_{00} to the higher TEM modes $\mathrm{TEM}_{m n}$.

- $\mathrm{TEM}_{m n}$ also excite elastic modes by pumping mirrors.

Introduction: What is the PI? (2)

- By this cycle, some elastic modes are so excited that it make trouble over locking the interferometer.

Introduction: What is the PI? (3)

- The PI condition is represented as follows [2]:

$$
\begin{aligned}
& \mathcal{R}>1 \\
& \mathcal{R}=\sum \frac{2 P}{c L M} \frac{Q_{\mathrm{m}}}{\omega_{\mathrm{m}}^{2}}\left(\frac{Q_{\mathrm{PR}}}{1+\left(\frac{\Delta \omega}{\delta \omega_{\mathrm{PR}}}\right)^{2}}+\frac{Q_{\mathrm{RSE}}}{1+\left(\frac{\Delta \omega-\Delta_{\mathrm{RSE}}}{\delta \omega_{\mathrm{RSE}}}\right)^{2}}\right) \Lambda
\end{aligned}
$$

Λ : overlap factor between optical and elastic mode,
$\Delta \omega=\omega_{00}-\omega_{\mathrm{TEM}}-\omega_{\mathrm{m}}$,
ω_{m} : angular frequency of the elastic mode.
\mathcal{R} is called a "parametric gain," and the summation is taken over all optical modes.

PI occurs when shapes and frequencies of the optical and elastic modes are same.

Strategy: What to calculate (1)

$$
\mathcal{R}=\sum \frac{2 P}{c L M} \frac{Q_{\mathrm{m}}}{\omega_{\mathrm{m}}^{2}}\left(\frac{Q_{\mathrm{PR}}}{1+\left(\frac{\Delta \omega}{\delta \omega_{\mathrm{PR}}}\right)^{2}}+\frac{Q_{\mathrm{RSE}}}{1+\left(\frac{\Delta \omega-\Delta_{\mathrm{RSE}}}{\delta \omega_{\mathrm{RSE}}}\right)^{2}}\right) \Lambda
$$

- When R_{1}, R_{2} changes within their errors, the transverse mode frequencies vary.
\rightarrow In some area of the $\left(R_{1}, R_{2}\right)$ plane, parametric gain might be large.
- Calculated by COMSOL with MATLAB

Strategy: How to calculate (2)

$$
\mathcal{R}=\sum \frac{2 P}{c L M} \frac{Q_{\mathrm{m}}}{\omega_{\mathrm{m}}{ }^{2}}\left(\frac{Q_{\mathrm{PR}}}{1+\left(\frac{\Delta \omega}{\delta \omega_{\mathrm{PR}}}\right)^{2}}+\frac{Q_{\mathrm{RSE}}}{1+\left(\frac{\Delta \omega-\Delta_{\mathrm{RSE}}}{\delta \omega_{\mathrm{RSE}}}\right)^{2}}\right) \Lambda
$$

- Elastic modes (frequencies and shapes)

COMSOL

- Overlap factors Λ
- Parametric gains \mathcal{R} through changing R_{1}, R_{2} by 2%

MATLAB

Parameters

- Mirror radius $r=110 \mathrm{~mm}$
- Mirror depth $d=150 \mathrm{~mm}$
- Mirror direction c-axis
- Power in the main cavity $P=0.41 \mathrm{MW}$
- Wavelength $\lambda=1064 \mathrm{~nm}$
- Main cavity length $L=3000 \mathrm{~m}$
- SR cavity length $L_{\mathrm{SRC}}=66.591 \mathrm{~m}$
- Q-value of mechanical modes $Q_{\mathrm{m}}=10^{8}$
- Finesse $\mathcal{F}=1550$
- Power transmittance of the PR mirror $T_{\text {PR }}=0.10$
- Power transmittance of the RSE
 mirror $T_{\text {RSE }}=0.37$

Result (with PR and detuned RSE)

The colored areas show
where $\mathcal{R}>1$.
Positive g
Max of the parametric gain $\log 10(\mathrm{R})$
(around R1 $=14000 \mathrm{~m}, \mathrm{R} 2=7500 \mathrm{~m}$)

KAGRA f2f meeting @ ICRR Feb. 3, 2012

Result (with PR and detuned RSE)

The colored areas show where $\mathcal{R}>1$.

Negative g
Positive g

Max. of the parametric gain $\log 10(R)$
(around R1=14000 m, R2=7500 m)

KAGR

Discussion (positive g)

- $\max (\mathcal{R})=4000$
- Only I elastic mode C is so unstable in the sense that $\mathcal{R} \gg 1$:

- The overlap is largest with the TEM20 mode.
- We should care about only the elastic mode C.

Discussion (negative g)

- $\max (\mathcal{R})=16000$
(4 times larger than the positive g)
- In addition to C, the below 2 modes are also unstable :

74.9 kHz

B

75.4 kHz

- For both A and B , their overlaps are largest with TEM02.

Conclusion

- In the previous figs., we see more colored region in the positive case.
- The negative g case has more elastic mode to care than the positive case.
(Since when curvature R changes with $2 \%, g=1-L / R$ varies more drastic for the negative g than for the positive g.)
- But the PI does not seem to be a serious problem in both cases(Not Always $\mathcal{R}>1$).
, With the ASC report by Michimura, the negative g is finally supported. (@ the MIF meeting I/I9)

Fin.

Appendix A: Calculation error

- Q. By setting the curvature requirement like $+1 \% /-0 \%$ (not $\pm 0.5 \%$ as usual), can we get rid of the PI risk in advance?
- A. Since the error of the FEM is $1 \sim 5 \%$, the error of $\max (\mathcal{R})$ should be $>2 \%$. So we cannot get rid of the risk completely.
(To get rid of the PI in advance, the error of the FEM should be $\ll 0.5 \%$. And there is no such a method.)

Appendix B: Check with the old result

- Often reported that the FEM calculations return with $>1 \%$ errors.
- Check with the Yamamoto's result(old parameters) [2] \rightarrow My result agree with it by $<2 \%$ errors for the peak position and value. \rightarrow OK
[2]H. Yamamoto et al., Amaldi proceedings(2009)

Maximum of the PI parameter $\log 10(\mathrm{R})$

Curvature radius of a mirror [m]

Appendix C: Loss of higher TEM modes

- For higher TEM modes, the power loss at mirrors is large.
- So, the Finesse becomes smaller than $\mathcal{F}=1550$ for them.
Q. How much is that effect?
A. The highest peak comes from TEM20\&02, and their power loss are about 3 ppm . So that effect doesn't make role.

Appendix D: Beam miss-centering

- A beam miss-centering might be occurs with Imm error.
- Q. By this error, the PI occurs?
- A. No. (By miss-centering, \mathcal{R} changes only 1%.)

Appendix E: When we face with the PI

- Because of the error of the FEM by COMSOL, the risk of the PI is not excluded completely.
- We should prepare for the PI by some method. (e.g. Suppress the quality value of the elastic mode by some actuators [3].)
[3] Zhang et al., 201I

```
Damped
by actuators.
```

