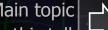
Special working group for KAGRA (LCGT) Roadmap

Masaki Ando

(Department of Physics, Kyoto University)

On behalf of LCGT special working group

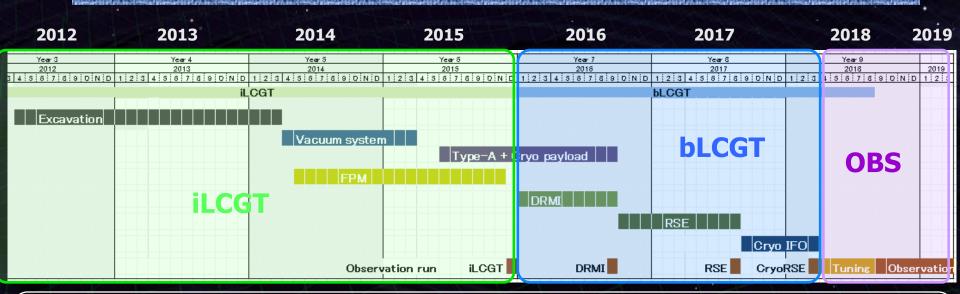

LCGT Roadmap Special working group

Roadmap special working group

- Special working group to make recommendation on the LCGT commissioning schedule.
- Open for all collaborators, nominally ~20 participants.
- Brainstorm-type meeting with free discussions.
- 20 meetings since Oct. 25, 2010.

Current Scope

To recommend the roadmap to realize LCGT.


- Make a recommendation of the master schedule,
- Summarize subsystem bottom-up plans.
- Construct a progress evaluation system.
- Summarize information of risk factors during construction.

Master Schedule

Project Master Schedule

- •We have updated the LCGT construction schedule.
 - Mainly because of delay in the excavation schedule. (or financial decision of the government)
- Good chance to refine the schedule.
 - Previous schedule was not a well-defined one.
 - * Challenging and aggressive schedule.
 - * Still have some inconsistencies between project master schedule and subsystem bottom-up plan.
 - We need better schedule management system.
 - * Quantitative evaluation of project progress both in project management and sub-system development.
 - * The status should be open for collaborators clearly.
 - Recommendation in the Last PAB:
 Progress evaluation system, sub-system bottom-up plan.

New Constraint on the master plan

Tunnel and Facility (by the end of FY2013)

Vacuum system by the end of FY2014

Start observation run
By the end of FY2017

* Completion the installation of the vacuum system is a strict constraint.

Detailed schedule will be determined with iterations with subsystem bottom-up plans. However, Earlier start of observation run is preferable.

Timeline to decide the master plan

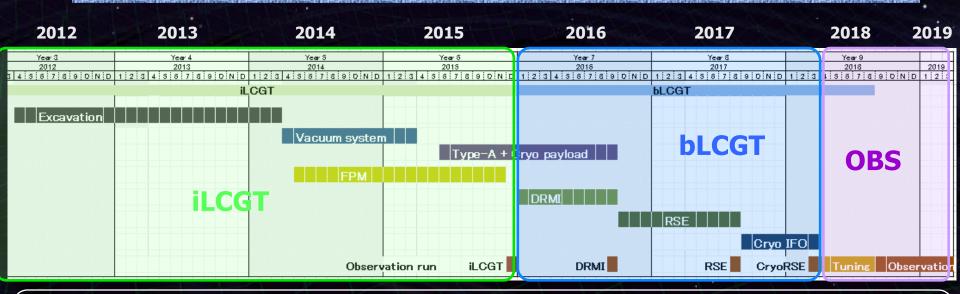
2011 Call for participation to the roadmap working group. Oct. Collection of on bottom-up plans of subsystems. Nov. 5 weekly meetings and Dec. several small ones with a few subsystems. Recommendation document on the master schedule. Circulation to SEO and all the LCGT collaborators. 2012 Submission to EC (Executive Committee) Jan. → Approval with minor revision. Decision announced to collaborators. Feedback to subsystem bottom-up plans → Checked in the series of internal reviews. Feb. Explanation in the face-to-face meeting (Now).

Commissioning Plan

LCGT schedule is extremely tight.

→ We should reduce the amount of the on-site commissioning tasks. Intensive tests are required for each sub-system before installation. Avoid additional tasks only for intermediate steps. Basic policy 'Do not use LCGT as an R&D facility'.

It is hard to test the full cryogenic test-mass system.


- Type-A isolator test requires a large facility and a quiet site.
- Cryogenic system requires long test time for a cool-down and warm-up cycle.
 - → Hard to avoid technical and schedule risks.

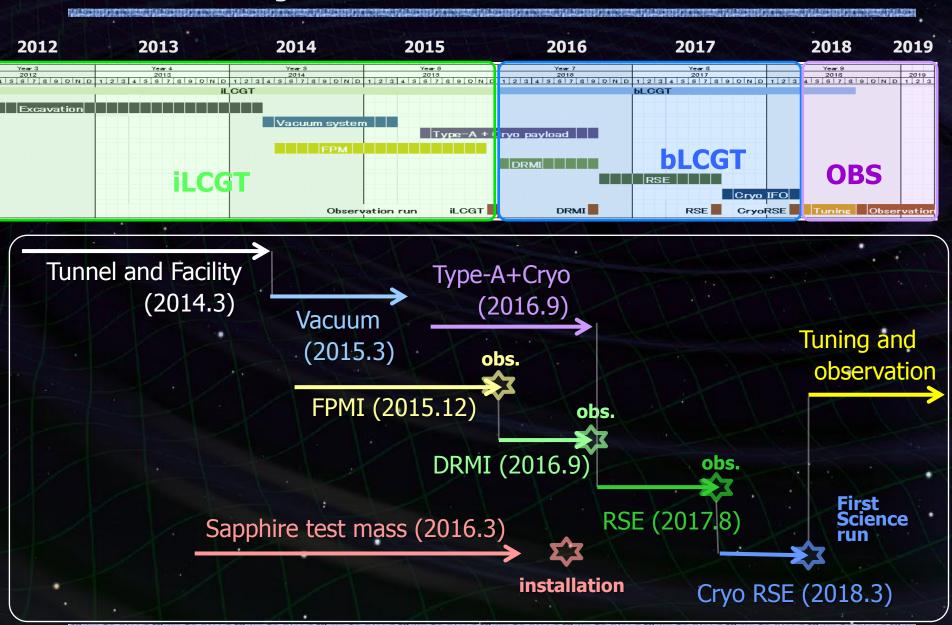
Roadmap to solve these concerns.

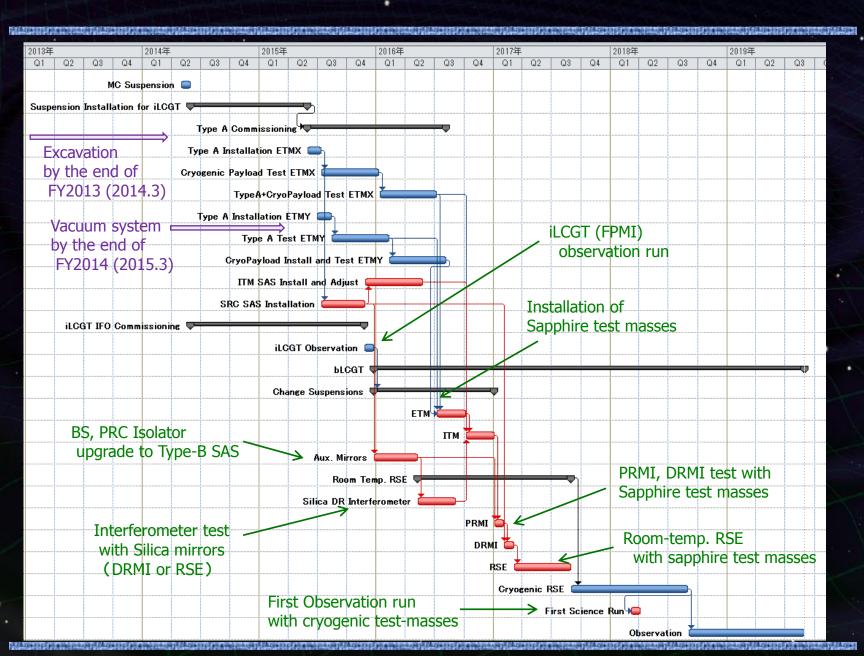
- Install ETMs in front of the original positions (by ~35 m) for the room-temp. interferometer commissioning.
- Step-by-step commissioning for the interferometer (FPM → DRMI → RSE)
- Full test of the real VIS and cryogenic system at the end rooms.

New Constraint on the master plan

Tunnel and Facility (by the end of FY2013)

Vacuum system by the end of FY2014

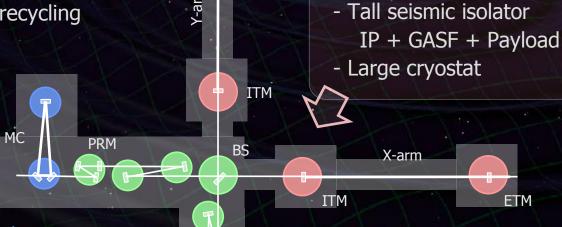

Start observation run
By the end of FY2017



* Completion the installation of the vacuum system is a strict constraint.

Detailed schedule will be determined with iterations with subsystem bottom-up plans. However, Earlier start of observation run is preferable.

Major milestones of KAGRA



bLCGT configuration

ETM

bLCGT configuration

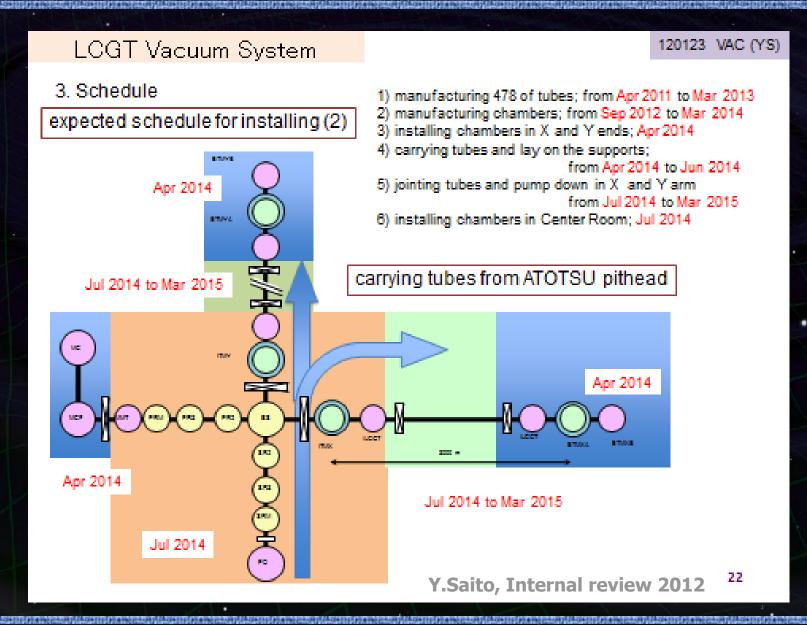
- Cryogenic test masses
- 3 km arm cavities
- RSE with power recycling

Type-C system

- Mode cleaner Silica, 1kg, 290K
- Stack + Payload

Type-B system

Type-A system


- Cryogenic test mass

Sapphire, 30kg, 20K

- Core optics (BS, RM ,...)Silica, 10kg, 290K
- IP + GASF + Payload
- Stack for aux. optics

Vacuum systems (- 2015.3)

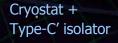


iLCGT commissioning (- 2015.12)

iLCGT configuration

- Room-temp. test masses suspended by Type-C' isolators
- FPMI with 2.93 km arm cavities
- Low laser power (~40W source).
- On-site test of VIS and Cryo-system at the end rooms.

iLCGT obs. run in Dec. 2015 ~1 month


Type-C' system

- Test mass and Core optics (BS, FM,...) Silica, 10kg, 290K
- Seismic isolator Stack + Type-B Payload

Cryogenic system test

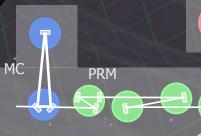
- Cryostat + Rad. shield duct
- Cryo-cooler
- Cryogenic payload

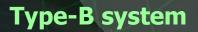
Shorter arm length by 71m

Type-A isolator full-system test

- Room-temp. test Sapphire (?), 23kg, 290K
- Tall seismic isolator IP + GASF + Payload

BS

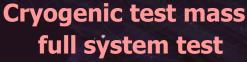

(No SEM)


bLCGT commissioning 1 (- 2016.9)

bLCGT1 (DRMI, Cryo full system)

- VIS upgrade to Type-B for core optics
- Center interferometer (DRMI) with room-temp. test masses.
- Full test of cryogenic test-mass system (Type-A SAS + Cryo-system)

Center IFO (DRMI)

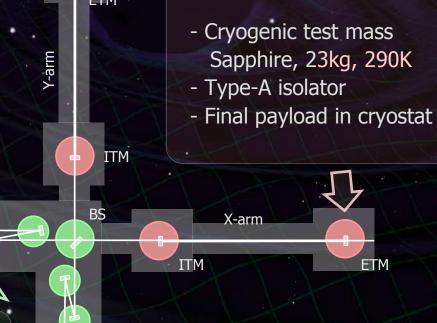

- Core optics (BS, RM ,...) Silica, 10kg, 290K
- IP + GASF + Payload
- Stack for aux. optics

ITM

BS

SEM

- Cryogenic test mass Sapphire, 23kg, 20K
- Type-A isolator
- Cryostat + cryo-cooler


Type-C' system

- Test mass. Silica, 10kg, 290K
- Seismic isolator Stack + Type-B Payload

bLCGT commissioning 2 (- 2017.8)

bLCGT full configuration

- 3 km arm cavities
- RSE with power recycling
- Sapphire test masses operated at room temp.

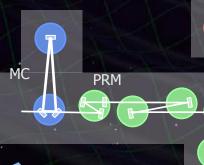
Cryogenic test mass

Type-B system

- Core optics (BS, RM ,...)Silica, 10kg, 290K
- IP + GASF + Payload
- Stack for aux. optics

SEM

Cryogenic operation (- 2018.3)


ETM

ITM

bLCGT configuration

- Cryogenic test masses
- 3 km arm cavities
- RSE with power recycling

first science run in Mar. 2018 ~1 month

Type-A system

- Cryogenic test mass Sapphire, 23kg, 20K
- Tall seismic isolatorIP + GASF + Payload

Type-C system

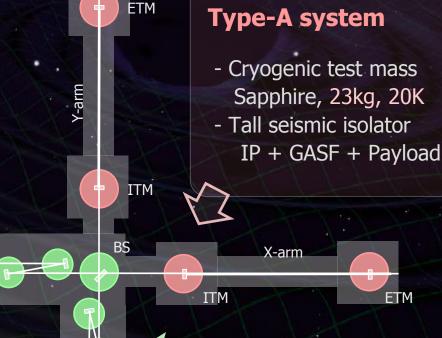
- Mode cleaner Silica, 1kg, 290K
- Stack + Payload

BS

Type-B system

X-arm

ITM


- Core optics (BS, RM ,...)Silica, 10kg, 290K
- IP + GASF + Payload
- Stack for aux. optics

Tuning and observation (2018.4 -)

Tuning and observation run with bLCGT full configuration

- Cryogenic test masses
- 3 km arm cavities
- RSE with power recycling

Type-C system

- Mode cleaner Silica, 1kg, 290K

MC

PRM

- Stack + Payload

Type-B system

- IP + GASF + Payload
- Stack for aux. optics

Subsystem
Bottom-up plans
Progress evaluation
Risk management

Subsystem Plans

Subsystem bottom-up schedule

- Detailed subsystem schedule (Development, Prototype test, Quality insurance, Installation,...)
- Should be consistent with the project master plan.
- Also include risk factors and back-up plans.

Progress evaluation

- Evaluated by a 'milestone scheme'
 - * Set ~10 milestones for each subsystem (subset of subsystem bottom-up plan)
 - * Status for the milestones -- checked in regular meetings.
- The status will be open for all the collaborators.
- System: Microsoft Project + Network access.

Current status/Next steps

- Internal reviews (~Jan. 2012)
 - Subsystem bottom-up plans with the newly decided master plan.
 - → Consistencies with the master plan have been checked.
 - Basic information have been presented on the milestones, risks of each subsystem.
- Upcoming tasks (by the next PAB).
 - Summarize the bottom-up plans and milestones for the project management (scheduling and progress evaluation).
 - ← Require a help of each subsystem.
 - Update and summarize the risk factors.
 - ← Also need a help of all the collaborators.

Summary

Roadmap special working group

- Master schedule has been decided.
- Detailed tasks to be finished:
 - Subsystem bottom-up plans
 - Milestones and progress evaluation
 - Risk factors