Recent progress and future prospects for LIGO

Nicolas Smith-Lefebvre Dec. 20 2011 ICRR

Introduction of myself

- 5.5 years graduate student at MIT
- Started working with LIGO in a summer project in 2005
- Working on the thesis...
- Finishing PhD in the summer

Gravitational Waves

 $G_{\mu\nu} = 8\pi T_{\mu\nu}$

GW detection using a Michelson interferometer

- 3 interferometers, Two sites
- Run by MIT and Caltech
- Large international collaboration (LSC)

Science by non-detection

- Crab pulsar spindown
- GRB070201
- Primordial GWs, compared to BBN limit
- Rates of binary mergers

Enhanced LIGO

- Make improvements to Initial LIGO detectors
 using Advanced LIGO technology
 - New Laser
 - Output Mode Cleaner
 - DC Readout
- I lived on site for 1.5 years in 2008-2009, installing, commissioning

The Output Mode Cleaner (OMC)

• Filters the light coming out of the interferometer

The goal of the OMC

Up close with the OMC

- 4 mirror cavity, ~1m length
- Finesse ~370
- Length actuators: fast PZT and slow thermal

OMC Suspension

suspension **OMC** bench G septum seismic window isolation platform

OMC automatic alignment

Tip tilt mirrors

- Single stage pendulum
- Magnetic actuators
- Important lessons learned about beam jitter

Dither alignment

- Very simple way to maximize transmitted power
- Tip-tilt steering mirror is is dithered in angle

SNR in transmitted signal

- Transmitted signal is composed of carrier and signal audio sidebands
- SNR $\boldsymbol{\alpha}$ audio sideband transmission

• We must maximize the transmission of the sidebands created by the gravitational waves

Dither alignment with a dirty beam

Total Power Gravitational-wave sideband

"False" gravitational wave

- Excite the elastic mode of the test mass
- Create large amplitude optical fields at audio frequencies
- Has the mode shape of the arm cavities

- Cancel carrier alignment contribution
- Real-time SNR dither
- Constant carrier transmission

Optimal alignment sensing of a readout mode cleaner cavity

N. Smith-Lefebvre,^{1,*} S. Ballmer,² M. Evans,¹ S. Waldman,¹ K. Kawabe,³ V. Frolov,⁴ and N. Mavalvala¹

¹LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ²Syracuse University, Syracuse, New York 12344, USA ³LIGO Hanford Observatory, P.O. Box 159, Richland, Washington 99352-0159, USA ⁴LIGO Livingston Observatory, P.O. Box 940, Livingston, Louisiana 70754-0940, USA *Corresponding author: nicolas@ligo.mit.edu

- Deployed on LIGO during S6
- I traveled to GEO to install beacon alignment with Mirko Prijatelj
- Likely to benefit future GW interferometers

DC Readout

- Alternative to standard Pound Drever Hall type
 demodulated readout
- Baseline for Advanced LIGO Benefits include:
- In principle lower shot noise
- Decreased noise coupling of laser noise and RF oscillator noise
- Simplifies readout electronics
- Greatly simplifies ability to do squeezed light injection

DC Readout Results

DC readout experiment in Enhanced LIGO

Tobin Fricke,^{1,*} Nicolás Smith-Lefebvre,² Richard Abbott,³ Rana Adhikari,³ Katherine L Dooley,⁴ Matthew Evans,² Peter Fritschel,² Valery Frolov,⁵ Keita Kawabe,⁶ Jeffrey S. Kissel,² and Sam Waldman²

¹ Department of Physics and Astronomy, Louisiana State Univ., Baton Rouge, LA

² LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, MA

³ LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, CA

⁴ Department of Physics, University of Florida, Gainesville, FL

⁵ LIGO Livingston Observatory, PO Box 940, Livingston, LA

⁶ LIGO Hanford Observatory, PO Box 159, Richland, WA

Enhanced LIGO summary

- Advanced LIGO prototypes were tested and and lessons learned
- We achieved 33% increase in astrophysical range
- Enhanced LIGO ended with 1 year of data taking, data analysis is ongoing

Squeezed light injection

- Manipulate quantum noise correlations of photons
- Reduces shot noise
- Same effect on noise as increased laser power, but without increased thermal load

Squeezed light results

- 2dB of noise reduction down to 150Hz
- Squeezing level consistent with known losses
- No additional noise added

Publications coming...

Advanced LIGO

Sensitivity Increase seismic isolation 10⁻²⁰ Strain [1/Hz^{1/2}] 10⁻²¹ المعلى المالية iLIGO 10⁻²² aLIGO 10⁻²³ laser power 10⁻²⁴ suspension 10^{3} 10¹ Frequency

Advanced LIGO Suspensions

Recent news

- After conclusion of squeezing test, last initial LIGO detector was decommissioned (Dec 5th)
- First aLIGO suspensions and seismic platforms installed (Dec 9th)

The Advanced GW Detector Network

Thank you どうもありがとうございます。 Gracias Merci Danke