Electromagnetic priors for black hole spindown in gravitational-wave searches from supernovae and long GRBs

> Maurice H.P.M. van Putten Korea Institute for Advanced Study (KIAS)

van Putten, Della Valle & Levinson, A&A Lett., arXiv:1111.0137 (to appear)

LCGT Meeting (online) November 8 2010

C. Burrows ESA/STScI and

SN1979C

(Type IIL, M100, D=15.2 Mpc) Evidence for BH remnant inferred from constant X-ray light curve over 12 years (1995-2007)

(Patnaude, Loeb & Jones, 2010, NewA, 16, 187)

Fig. 1. Evolution of the X-ray luminosity of SN 1979C. The dotted, dashed, and longdashed diagonal lines correspond to the evolution of the SN luminosity if it were powered by the magnetic dipole spindown of a central magnetar for various X-ray efficiencies, f_x . The data points correspond to the 0.3–2.0 keV X-ray luminosities with 1 – σ uncertainties, assuming a distance of 15.2 Mpc. The upper limit from the *Einstein* observatory is depicted as an arrow. The heavy solid line corresponds to our best fit value of a nearly constant X-ray luminosity.

SN1987A

SN1998bw

Radio-loud (Turtle et al. 1987) and aspherical, > 10 s > 10 MeV neutrino burst, EK~Ie5Ierg with relativistic jets (Nisenson & Papaliolios 1999) (with BH remnant?)

Radio-loud and aspherical with EK~2e51 erg $(M_{ej} / 2M_{\odot})$ (Hoeflich at al. 1999) with relativistic ejecta $v_{ej} / c \sim 20\%$ (Wieringa et al. 1999)

GRB classification

GRB classification

Observational evidence for a class of relativistic CC-SNe

Data from Maurer et al., 2010, MNRAS, 402, 161

Soderberg, et al., 2011, arXiv:1107.1876

Rotationally powered aspherical relativistic SNe

Bisnovatyi-Kogan 1970, LeBlanc & Wilson 1970 Ostriker & Gunn 1971, Paczynski 1991

proto-neutron star (PNS) Kerr black hole

 $E_{sp} \approx 3 \times 10^{52} \text{ erg}$ $E_{sp} \leq 7.5 \times 10^{52} \text{ erg}$ (supramassive)

(e.g. Haensel et al., 2009, A&A, 502, 605)

Formation with superstrong magnetic fields?

(e.g. Heger, Woosley & Spruit, 2005, ApJ, 626, 350)

Production GRBs from baryon-poor jets?

(Dessart, et al., 2007, ApJ, 669, 585; 2008, ApJ, 673, L43)

Natural outcome of massive progenitors in intraday binaries (e.g. Woosley 2003, Paczynski 1998)

 $E_{sp} \approx 6 \times 10^{54} \left(\frac{M}{10M}\right) \text{erg}$

$$E_{BPJ} = 4 \times 10^{52} \left(\frac{M}{10M_{\odot}}\right) \left(\frac{\theta_{H}}{0.5}\right)^{4} \text{ erg}$$
$$E_{w} = 4 \times 10^{53} \left(\frac{M}{10M_{\odot}}\right) \text{ erg}$$

(van Putten & Levinson, 2003, ApJ, 584, 937)

outcome of massive progenit

Producing SNe from spindown of a proto-neutron star (PNS)

Bisnovatyi-Kogan, G.S., 1970, Astron. Zh., 47, 813

Haensel et al., 2009, A&A, 502, 605

magnetic winds:

$$\frac{1}{2}\beta_{ej} < \eta < 1$$

$$E_{c} = \begin{cases} 3 \times 10^{52} \text{ erg (PNS)} \\ 7.5 \times 10^{52} \text{ erg (sPNS)} \\ (\text{supramassive PNS}) \end{cases}$$

(baryon-poor to baryon-rich winds)

$$E_w = \eta^{-1} E_{SN} \le E_c$$

(van Putten, Della Valle & Levinson, 2011, A&A Lett., to appear arXiv:1111.0137)

Sample of hyper-energetic CC-SNe and long GRBs

GRB	Supernova	Redshift z	E_{γ}	E_{tot}	E_{SN}	η	E_{rot}/E_c
	SN2005ap	0.283			> 10	1	> 0.3
	SN2007bi	0.1279			> 10	1	> 0.3
GRB 980425	Sn1998bw	0.008	< 0.001		50	1	1.7
GRB 031203	SN20031w	0.1055	< 0.17		60	0.25	10
GRB 060218	SN2006aj	0.033	< 0.04		2	0.25	0.25
GRB 100316D	SN2006aj	0.0591	0.037-0.06		10	0.25	1.3
GRB 030329	SN2003dh	0.1685	0.07-0.46		40	0.25	5.3
GRB 050820A		1.71		42			1.4
GRB 050904		6.295		12.9			0.43
GRB 070125		1.55		25.3			0.84
GRB 080319B		0.937		30			1.0
GRB 080916C		4.25		10.2			0.34
GRB 090926A		2.1062		14.5			0.48
GRB 070125	(halo event)	1.55		25.3			0.84

$$E_{tot} = E_{\gamma} + E_k$$

 E_k : from calorimetry on afterglow emissions and/or accompanying SN (if present, and observationally limited to 0.17 z)

Sample of hyper-energetic CC-SNe and long GRBs

GRB	Supernova	Redshift z	E_{γ}	E_{tot}	E_{SN}	η	E_{rot}/E_c		
	SN2005ap	0.283			> 10	1	> 0.3		
	SN2007bi	0.1279			> 10	1	> 0.3		
GRB 980425	Sn1998bw	0.008	< 0.001		50	1	1.7	\bigcirc	
GRB 031203	SN20031w	0.1055	< 0.17		60	0.25	10	\bigcirc	
GRB 060218	SN2006aj	0.033	< 0.04		2	0.25	0.25		black
GRB 100316D	SN2006aj	0.0591	0.037-0.06		10	0.25	1.3	\bigcirc	DIACK
GRB 030329	SN2003dh	0.1685	0.07-0.46		40	0.25	5.3	\bigcirc	halaa?
GRB 050820A		1.71		42			1.4	\bigcirc	noies:
GRB 050904		6.295		12.9			0.43		
GRB 070125		1.55		25.3			0.84		
GRB 080319B		0.937		30			1.0	\bigcirc	
GRB 080916C		4.25		10.2			0.34		
GRB 090926A		2.1062		14.5			0.48		
GRB 070125	(halo event)	1.55		25.3			0.84		

$$E_{tot} = E_{\gamma} + E_k$$

 E_k : from calorimetry on afterglow emissions and/or accompanying SN (if present, and observationally limited to 0.17 z)

Multimessenger emissions (GWs, MeV neutrinos and magnetic winds)

Thermal and magnetic pressureinduced Papaloizou-Pringle instability

van Putten 2002, van Putten & Levinson 2003

or magnetic-pressure type instabilities (Bromberg et al. 2006)

Study spindown in light curve in gamma-rays by matched filtering

Spin down of black holes and proto-neutron stars

$$\tau_+ = \tau_- + \tau_{GW} + \tau_{\scriptscriptstyle V}, \ \ \Omega_+ \tau_+ = \Omega_- \tau_- + \Omega_T \tau_{GW} + P_{\scriptscriptstyle V},$$

- A: $\Omega_T = \Omega_{ISCO}$ matter at ISCO with GW emissions
- B: $\Omega_T = \frac{1}{2}\Omega_H$. matter further out with no GW emissions

Model C: spindown of PNS

Individually normalized GRB light curves

TABLE I. Summary on the nLC over $t_k \epsilon[-1,3]$ ($k = 1, 2, \dots, \nu = 400$) of two ensembles of N = 300 long GRBs to templates derived from spindown of black holes (14) and PNS (17).

Quantity	Symbol	$2 \text{ s} < T_{90} < 20 \text{ s}$	$T_{90} > 20 \text{ s}$	$\langle T_{90} \rangle \geq 120 \text{ s}$
mean duration	$T_{90}[s]$	9.8	72	119.6-182.9
ensemble size	N	300	300	60
(sub-)interval	Ι	[-3,1], [-1,0], [0,3]	[-3,1], [-1,0], [0,3]	[-3,1]
convergence nLC	$\sigma_A[\%]$	0.98, 0.65, 0.11	1.2, 1.3, 1.2	
	$\sigma_B[\%]$	0.67, 0.94, 0.19	1.2, 1.1, 1.2	
	$\sigma_C[\%]$	0.15, 0.12, 0.15	1.6, 1.4, 1.7	
deviation δ	$\Sigma_A[\%]$	4.0, 5.0, 3.3	3.5, 5.4, 1.4	
	$\Sigma_B[\%]$	8.7, 14, 5.2	5.6, 7.9, 2.9	
	$\Sigma_C[\%]$	13, 12, 12	8.3, 7.9, 6.7	
goodness-of-fit	$\chi^2_{red,A}$			1.38
	$\chi^2_{red,B}$			3.50
	$\chi^{2}_{red,C}$			4.38

Sample of hyper-energetic CC-SNe and long GRBs

GRB	Supernova	Redshift z	E_{γ}	E_{tot}	E_{SN}	η	E_{rot}/E_c	Prior	Ref.
	SN2005ap	0.283			> 10	1	> 0.3	indet	1
	SN2007bi	0.1279			> 10	1	> 0.3	indet	1
GRB 980425	Sn1998bw	0.008	< 0.001		50	1	1.7	BH	2
GRB 031203	SN20031w	0.1055	< 0.17		60	0.25	10	BH	3
GRB 060218	SN2006aj	0.033	< 0.04		2	0.25	0.25	indet	4
GRB 100316D	SN2006aj	0.0591	0.037-0.06		10	0.25	1.3	BH	5
GRB 030329	SN2003dh	0.1685	0.07-0.46		40	0.25	5.3	BH	6
GRB 050820A		1.71		42			1.4	BH	07
GRB 050904		6.295		12.9			0.43	indet	7
GRB 070125		1.55		25.3			0.84	indet	7
GRB 080319B		0.937		30			1.0	BH	07
GRB 080916C		4.25		10.2			0.34	indet	7
GRB 090926A		2.1062		14.5			0.48	indet	8
GRB 070125	(halo event)	1.55		25.3			0.84	indet	9

$$E_{tot} = E_{\gamma} + E_k$$

 E_k : from calorimetry on afterglow emissions and/or accompanying SN (if present, and observationally limited to 0.17 z)

Gravitational-wave form templates

Estimated sensitivity distances

Advanced detectors (LIGO-Virgo, LCGT): h~2e-24@1000Hz

 $D \approx 35$ Mpc

van Putten, Kanda, Tagoshi, Tatsumi, Masa-Katsu & Della Valle, 2011, PRD, 83, 044046

Conclusions

some nearby galaxies (M51, M82) show frequent CC-SNe (1/10 years)

Long GRBs from prolonged BH spindown in CC-SNe and mergers

Accompanying magnetic torus winds may power hyper-energetic SNe

Conclusions

Some nearby galaxies (M51, M82) show frequent CC-SNe (1/10 years) Long GRBs from prolonged BH spindown in CC-SNe and mergers Accompanying magnetic torus winds may power hyper-energetic SNe

Collaboration with observers

Develop a catalogue of nearby galaxies producing frequent CC-SNe

Downselect radio-loud hyper-energetic events and search for GWBs:

- needs dedicated optical survey
- LCGT pipeline for long bursts, manycore-GPU? (presently 1000 hr/1hr TAMA data)