
LCGTを用いた重力波ラジオメトリ
 - 波源探索の実現性-

2011/09/19 [19aSV-3]

Yuta Okada
 Sanjeev Dhurandhar,Hideyuki Tagoshi, Hirotaka Takahashi, Nobuyuki Kanda

 LCGT Collaboration
Osaka City Univ. Kanda-Lab

1



I. What’s GW Radiometry

II. Spreading of point source

III. Summary and Future

2Outline



GW radiometry analysis 3

What’s GW radiometry

Stationary signal

Possible sources
• Astrophysical gravitational wave background
• Stochastic gravitational wave background

We can extract the correlation between two of more 
detector outputs with appropriate time lag for 
particular direction.

e.g. )
unresolved GW from pulsars of extra galaxies
or other cluster of galaxies

We will be able to find GW hotspots 
or an anisotropy of GW background.



GW radiometry analysis

The cross-correlation search for a hot spot of gravitational waves

What is GW radiometry

(1) Time series data split into short 
‘chunks’

(2) GW signal on two detectors have 
a time delay (= phase difference in 
Fourier spectrum of chunks)

• Delay changes according to 
the earth rotation.

(3) Product in Fourier domain

(4) Scan for all sky, 
and integrate long duration
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for observing a hot spot and could be made optimal by
‘masking’ the rest of the sky if the hot spot emits a strong
signal.
The GW strain amplitude for a rotating neutron star

is proportional to the square of the frequency [5],

h ∼ 4π2α
G

c4
εI

R
f2 , (1)

where α ∼< 1 is the orientation factor, G is the Newton’s
gravitational constant, c the speed of light, ε is the el-
lipticity of the neutron star, I the moment of inertia,
R the distance to the source and f the GW frequency.
Since the cross-correlation statistic is quadratic in the
strain amplitude, it scales as the fourth power of the fre-
quency and therefore the main contribution to the SNR
will tend to come from high frequency sources assuming
that they are relatively abundant in the high frequency
regime. Thus it is the population of millisecond neutron
stars that we must primarily consider. We then estimate
the millisecond neutron star population from the astro-
physical information that is available and show that one
can get an acceptable SNR, ρ ∼ 1, for an integration of
time of about an year. Using multiple baselines improves
the SNR further. We find that among the current or near
future baselines, the baseline of the two LIGOs and the
baseline of LIGO Livingston and a LIGO like detector at
AIGO site stand out - they give dominant contribution
to the SNR.
In section II, we give a brief description of the cross-

correlation method and the statistic and then derive an
expression for the optimal SNR. In section III, we state
our results and discuss them in light of the astrophysical
scenarios that are possible and the sensitivities of the
future advanced detectors such as the ET.

II. THE CROSS-CORRELATION STATISTIC
FOR TARGETING A HOT SPOT

We refer to paper I for the detailed arguments involved
in defining the cross-correlation statistic. Here we only
furnish the salient steps. Since here we are interested in
observing a hot spot, we will restrict our discussion to a
point source. The full statistic, which we denote by S, is
a weighted sum of elementary pieces ∆Sk, k = 1, 2, ...n
defined over a time-segments tk−∆t/2 ≤ t ≤ tk+∆t/2
which are labeled by k. The full observation time is T =
n ∆t. The ∆t is so chosen that it is much larger than the
possible time-delay between the detectors (which must
be less than about 40 ms for ground-based detectors)
and much less than the time required for the orientation
of the detectors to change appreciably and also on the
timescale in which the noise is stationary. Current values
of ∆t used in LSC data analysis vary from 32 to 192
seconds. Let us consider a pair of detectors labeled by
I = 1, 2, then the data in the Ith detector is given by
xI(t) = hI(t) + nI(t), the signal hI(t) is added to the
noise nI(t) in the Ith detector. For a point source in the

direction Ω̂, the ∆Sk also becomes a function of Ω̂. It
can be expressed easily in the Fourier domain,

∆Sk(Ω̂) =

∫ ∞

−∞

df x̃∗
1(tk; f) x̃2(tk; f) Q̃(tk, f, Ω̂) , (2)

where the x̃∗
I(tk; f) are short term Fourier transforms

(SFT) defined only over the interval ∆t around tk,
namely,

x̃I(tk; f) :=

∫ tk+∆t/2

tk−∆t/2
dt′ xI(t

′) e−2πift′ . (3)

The Q(tk, f, Ω̂) is a filter function chosen so that it op-
timizes the filter output. It also depends on the power
spectrum of the GW source and the power spectral den-
sities of the noises in each of the detectors. As discussed
in paper I, in the general case it is a far more complicated
object - a functional - but for the case of a point source,
it reduces to a function of the direction Ω̂. Even then
it remains a functional of the signal power spectral den-
sity and the noise power spectral density (PSD). With a
slight abuse of notation we still write it as a function of
f .
The ∆Sk are random variables because of the noise

and for different k we take them to be uncorrelated. The
mean and the variance of ∆Sk are denoted respectively
by µk = 〈∆Sk〉 and σ2

k = 〈∆S2
k〉 − 〈∆Sk〉2. It has been

shown in paper I that the linear combination that yields
the maximum SNR is:

S =

∑n
k=1 µk σ

−2
k ∆Sk∑n

k=1 µk σ
−2
k

, (4)

ρ =

{
n∑

k=1

µ2
k/σ

2
k

} 1
2

, (5)

where ρ is the SNR. The sum over k can be converted
into an integral over t and henceforth in this article we
drop the suffix k and replace tk by just t. This helps to
avoid clutter without jeopardizing clarity.
We now turn to the noise and signal PSDs in terms

of which the SNR can be finally expressed. The signal
cross-correlation in the two detectors in the limit of large
time segment can be written as:

〈h̃∗
1(t, f) h̃2(t, f

′)〉 = δ(f − f ′)H(f) γ(t, f, Ω̂) , (6)

where γ(t, f, Ω̂) is the so called directed overlap reduction
function analogous to the one defined in [6] for the full
sky, and given in the case of the point source by,

γ(t, f, Ω̂) = Γ(t, Ω̂) e2πifΩ̂·∆x(t)/c , (7)

Γ(Ω̂, t) = F+1(t, Ω̂)F+2(Ω̂, t)

+ F×1(Ω̂, t)F×2(Ω̂, t) , (8)

and where the ∆x(t) is the vector joining detector 1 to
detector 2 and rotates with the Earth tracing out a cone.

x1,2(t) for [tk −∆t/2, tk +∆t/2]

⇒ �x1,2(tk; f)

Ref: S. Mitra et. al., Phys. Rev. D 77, 042002 (2008).

Δx will change by earth rotation.

Idea: cross-correlation with a assumption of source direction, but without waveform requirement.
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Radiometry Filter

Q = λ
γ∗(f, Ω)H(f)
P1(f)P2(f)

λ :
H(f) :
Pi :

normalization factor
GW PSD
detector noise PSD

γ(f, Ω) =
�

A=+,×
FA

1 FA
2 e2πfiΩ̂·∆�x/c

Antenna response

Γ(Ω̂, t)

4

What’s GW radiometry

phase correction



Antenna correlation mapping

LCGT-LIGO(Livingston)

Γ(Ω̂, t = 0) t : GMT

zenith of LIGO(Livingston)

zenith of LCGT
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Mapping radiometry result

check for all sky by Ω changed Ω̂
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Mapping radiometry result

check for all sky by Ω changed Ω̂

Ω̂ is source direction
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data（simulation）

a-LIGO data

radiometry filter

LCGT data

FFT FFT

chunk

s1(t) = hobs1(t) + n1(t)
s2(t) = hobs2(t) + n2(t)

hobs(t) = F+h+ + F×h×

ni(t) = detector noise
s̃1(f), s̃2(f)

∆S(t) =
� ∞

−∞
dfs̃∗1(t;f)s̃2(t;f)Q(t,f,Ω̂)

Q = λ
γ∗(f, Ω)H(f)
P1(f)P2(f)

σ2 = �[µ − µ0]2�µ = ��[∆S]� assumption for source direction

Simulation flow

time

ρ(Ω̂) = µ/σ
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Sensitivity of Detectors 9

What’s GW radiometry

Detector’s sensitivities which use to make noise in time series.
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Detector and source position

LCGT-LIGO(Livingston)

Γ(Ω̂, t = 0) t : GMT

zenith of LCGTzenith of LIGO(Livingston)
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Detector and source position

LCGT-LIGO(Livingston)

Γ(Ω̂, t = 0) t : GMT

zenith of LCGTzenith of LIGO(Livingston)

source injection point
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Signal injection 12
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Stripe patterns of              is changed by GW’s 
frequency and source direction. 

The output is the superposition of             .

We will observe for long span in practice, so it is 
effective that we consider the average for 1 day. 

15Spreading of point source

∆S(Ω̂)

Spreading of point source

∆S(Ω̂)



16Point source’s behavior

Spreading of point source

injection in various sky position.



source injection

one day average
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source injection

one day average
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δ = 75◦

δ = 45◦

δ = 15◦

Variation in declination angle

f = 300Hz
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Spreading of point source

δ = 60◦

∼ 10◦∼ 40◦

Variation in frequency
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Spreading of point source

δ = 60◦

∼ 10◦∼ 40◦

Variation in frequency

ΔΩ is the area which > FWHM



20Solid angle vs diffraction limit

Spreading of point source

diffraction limit
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21Solid angle vs diffraction limit

Spreading of point source
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• We develop the radiometry analysis.

• We discuss how signal which is point injection spreads 
for frequency and declination.

• If signal’s frequency is 100Hz, the number of pixels is 
~2000.

• Study for more realistic sources.

• And study for non-point (area spread/distributed) 
sources.

Summary and Future

Summary

Future



~ Fin ~
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Inverse FFT
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for detector 2
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f = 300Hz
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LCGT-INDIGO


