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Introduction 

2011/9/20 2 

 Mechanical models are necessary to estimate seismic noise 
and control noise in the interferometer 

 Conventional 1-D models：No couplings between different DoFs 

 Rotation occurs by couplings with translational motions 
 Rotation amplitudes of the mirror must be estimated by 2-D 
or 3-D models 

 When the beam-spot is off-centered, rotation of the mirror 
changes the light-pass. 

We construct 3-D models, and estimate the amplitude 

of the mirror rotation due to the seismic motion. 

Changes of the light-pass due to 

the rotation of the mirror 

Misalignment of the beam-spot 



Construction of the Models 
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 Vibration Isolation Systems= 

Rigid Bodies＋Elastic Elements（wires, springs） 

LCGT Type-A System： 10 bodies (57 DoFs) 

 Each body has 6 DoFs (X,Y,Z,θx,θy,θz). 

 Wire potential is divided into stretches and torsions.  

 A GAS filter works as a uni-dimensional ideal spring. 

 Elasticity of the heat links is taken into account.  

 No deformation of the bodies, no violin motions of the wires 
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Calculation Sequence 
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 Set the parameters (geometry, mass, moment of inertia, etc.) 

 Calculate the potential (U), dissipation (F) and kinetic (T) energies. 

 Find the local minimum (equilibrium point) of the potential (U). 

 Linearize the equations of motion around the given equilibrium point. 
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Mathematica is used for the calculation. 

 Calculate the eigen-frequencies and frequency response of the system. 



Estimation of the spectrum densities of 

the angular fluctuation of the test-mass 

mirrors, due to seismic motions 
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Angular Motions of the Bodies 

2011/9/20 6 

 Angular motions are excited by couplings with translational motions. 

 The couplings come from asymmetry of the systems: vertical separations 

between suspension points and CoMs, asymmetry in the wire lengths or 

diameters, asymmetry in the spring constants, etc. 

 It is impossible to expect the asymmetry of the real systems. 

 

 Asymmetries are randomly given, and the computation is iterated for 

many times (Monte Carlo simulation) 



Asymmetry 
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 Wire lengtsh：±0.5 mm 

 Suspension points：±0.5 mm for x, y, z 

 Effective stiffness of the inverted pendulums：±50 % 

 Attachment point of the heat link：±5 cm from CoM 

 Wire diameters：±5 % 

Inverted Pendulums 
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Cryostat 
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Heat links 



Spectrum Density of the Mirror Angular Fluctuation 
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 Iteration：20  Seismic motion spectrum：Measured 

data in February, 2007 

Pitch 

Yaw 

Attachment point of heat 

links, asymmetry in IPs 

Asymmetry in wire 

lenghs, asymmetry in 

suspension points 



Impact on the Sensitivity 
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 Assume 1 mm misalignment of the beam spots. 

The impact on the sensitivity by the 

angular motion is relatively small, 

compared with the impact by the 

translational motion. 

Pitch resonance of mirrors 

1 mm 

Rough Estimation 



RMS Amplitude 
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Yaw:  0.7 μrad (0.01 Hz) Maximum 

Pitch: 0.5 μrad (0.01 Hz) Maximum 

Yaw:  ~2.1 mm 

Pitch: ~1.5 mm 

Misalignment of the beam 

spot due to the rotation 

We need to consider the curvature of the mirrors, and the radiation 

pressure effects.  Another talk from Y. Michimura 



To suppress the RMS 
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0.51Hz 0.54Hz 

0.67Hz 1.01Hz 

0.20Hz 



Summery 
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 We construct 3-D rigid-body models of the vibration isolation systems. 

 We estimate the angular fluctuation of the test-mass mirrors due to the 

seismic motions. 

 We find that the impact on the sensitivity by the mirror angular motion is 

smaller than the impact by the translational motion (under the given 

asymmetry for this time). 

Future Works 

 Validation of the calculation by prototype experiments 

 Development of the local control systems of mirrors 

 Estimation of the suspension thermal noise of the 

multi-pendulums 



The End 
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Appendix 
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Seismic Motion in Kamioka Mine 
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 Measured data on Feb. 13th, 2007 
（>20Hz is interpolation by f^(-2) function） 

 Bad seismic weather. (Normally, the seismic motion is much smaller 
around 0.1~1 Hz) 



Need More Attenuation! 

2011/9/20 16 

 Seismic noise is barely under the 

nominal sensitivity in > 10 Hz. 

 > 2 Hz is affected by the heat links. 

 The vibration on the inner shield of 

the cryostat might be larger than 

the ground vibration. 

 We will need vibration isolation for 

the heat links 

Sensitivity curve (Jan. 2011) V.S. 

Seismic noise (H+V/300) 

Room Temp. 

Cryostat 

Heat Links 



Compensation of Effective Bending Points 
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 Due to the elasticity of the wire, the 

effective bending point and the clamp 

point is separated by: 

T

EI


E: Young’s modulus 

I: Moment of area 

T: Tension 



Dissipation 

2011/9/20 18 

 Dissipation considered in the calculation： 

Viscous damping and Structure damping 

 Viscous damping: Damping force is proportional to the relative velocity 

(Eddy current damping in our case) 
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 Structure damping: Caused by the internal friction of the elastic 

elements. The spring constants are extended to the complex numbers. 
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Dissipation Dilution 
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 In our models, the restoring force of pendulum is caused by the 

elasticity of the wires. 

 In actual cases, the restoring force is caused mainly by the 

gravitational energy, so that the loss of the pendulum is smaller than 

the loss angle of the wire material. 

 To take this into account, the dissipation of the vertical bonce of the 

wire and the horizontal motion of the suspended body is separately 

calculated. 
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What If the IM is Suspended by 4 Wires? 
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 Pitch-longitudinal couplings are relatively large. 

 Additionally, we expect vertical-pitch couplings due to the asymmetry 
of the spring constants of mini-GAS filters. 



Impact of Each Kind of Asymmetry 
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 Pitch 



Impact of Each Kind of Asymmetry 
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 Yaw 



Angular Fluctuation of the Mirrors 
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 Recycling Mirrors 

RMS: 9 μrad (10 mHz) 

RMS: 1 μrad (10 mHz) 



Angular Fluctuation of the Mirrors 

2011/9/20 24 

 Beam Splitter 

RMS: 2 μrad (10 mHz) 

RMS: 0.5 μrad (10 mHz) 


