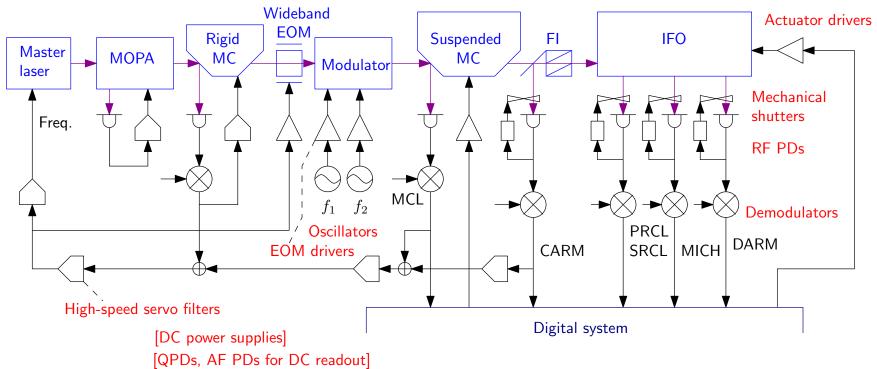
Report on Analog Electronics Subsystem

Shigenori Moriwaki

Advanced Materials Science, University of Tokyo

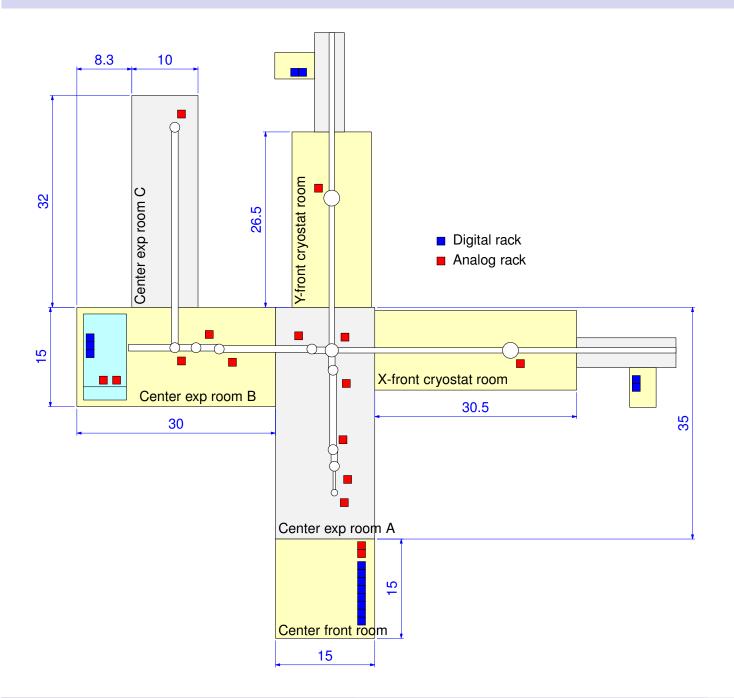
2011-08-04 [JGW-G1100551]


Members:

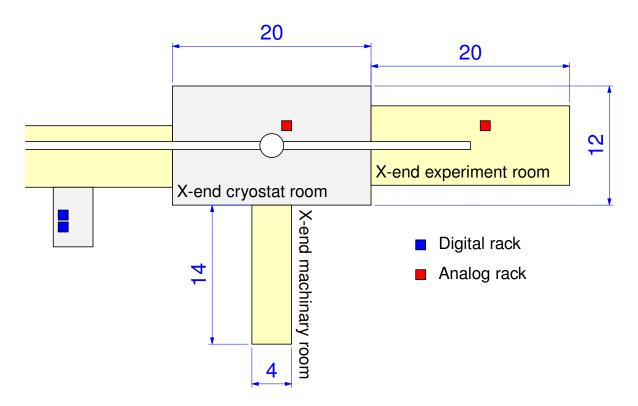
- Tomotada Akutsu
- Yoichi Aso
- Souichi Telada
- Osamu Miyakawa
- Shinji Miyoki

Contents

- Tasks of Analog Electronics Subgroup
- Location of analog racks
- Components to be provided
- DC power supply
- Analog signal transfer
- Mechanical interfaces
- Schedule
- Risk management


Tasks of Analog Electronics Subsystem

Components to be provided:


- DC power supplies
- Photo detectors
- Actuator drivers
- RF oscillators, drivers and demodulators
- Conditioning filters for ADC/DAC
- High-speed servo filters out of the digital control subsystem

Location of analog rack: center area

- (locations of optical benches are not determined yet)
- Analog racks should be separate sufficiently far from AC transformer and AC motors used in vacuum or cryogenic instruments.

Location of analog rack: X-end area

• We need the same consideration as that in the center area.

Components list (1/6) with requirements : DC Power supplies

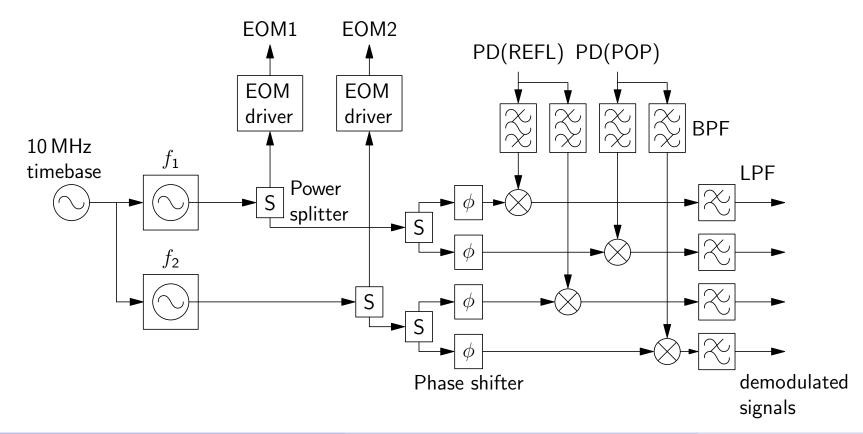
- Bipolar 24 V power supply [iLCGT]
- 24-to-15 V (or to-18 V) series regulator [iLCGT]
- 180 V high-voltage supply for QPD bias [iLCGT]
- High-voltage supply for coil driver [iLCGT, voltage: TBD]
- High-voltage supply for piezo actuator [iLCGT, voltage: 150 V (TBD)]
- High-current switching mode supply for LD driver [iLCGT]
- High-current supply for TEC (Peltier) driver [iLCGT]

Components list (2/6): Photo detectors

- RF PDs for length sensing [iLCGT, in air, in vacuum, 100 mW, ϕ 3 mm, 45 MHz or 16.875 MHz]
- AF PDs for intensity stabilization [iLCGT, in air, in vacuum]
- RF QPDs for wave-front sensing [iLCGT, 45 MHz or 16.875 MHz]
- AF QPDs for beam position sensing [iLCGT]
- Photo detectors for DC readout [bLCGT, 100 mW, ϕ 3 mm]
- Optical lever sensors [iLCGT]
- CCD imaging monitors [iLCGT]

(Common requirement: quantum efficiency >0.9)

Base design:


- TAMA300 RF PD
 [N. Mio et al., Jpn. J. Appl. Phys. 40, p.426 (2001)]
- High-power, low-noise resonant PD
 [H. Grote, Rev. Sci. Instrum. 78, 054704 (2007)]

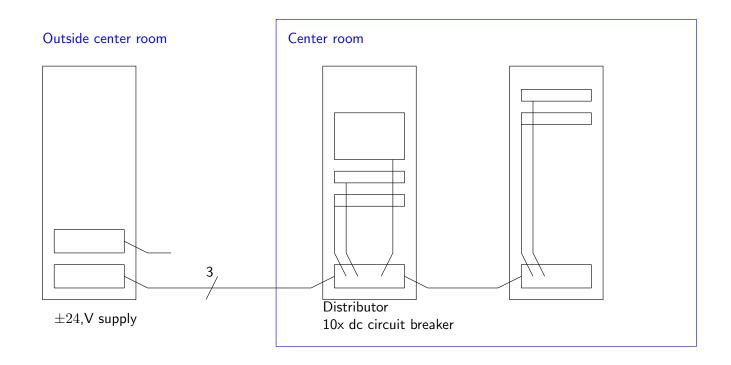
Components list (3/6): Actuator drivers

- Piezo actuator drivers [iLCGT, 150 V]
- Wideband EOM drivers [iLCGT, few MHz bandwidth]
- Picomotor(R)/step motor drivers [iLCGT]
- Drivers for Ultrasonic motor (waveplate holder etc.) [iLCGT]
- Coil drivers for ITM-ETM [iLCGT]
- Coil drivers for SAS IP control [iLCGT]
- TEC (Peltier) driver [iLCGT]
- Electrostatic actuator driver [bLCGT]

Components list (4/6): RF System

- Stable RF oscillators [iLCGT]
- Low phase-noise oscillators [bLCGT]
- Distributors [iLCGT]
- RF resonant EOM drivers [iLCGT]
- I&Q demodulators [iLCGT, $1 \text{ nV}/\sqrt{\text{Hz}}$, 100 mV range]

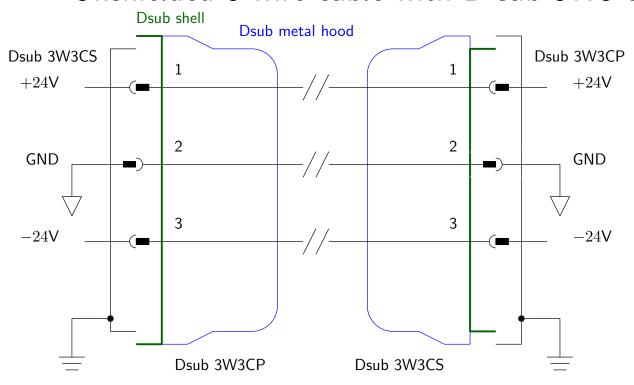
Components list (5/6): Conditioning filters for ADC/DAC


- Whitening and de-whitening amplifiers [iLCGT]
- Anti-aliasing filters in front of ADC [iLCGT]
- Anti-imaging filters for DAC output [iLCGT]

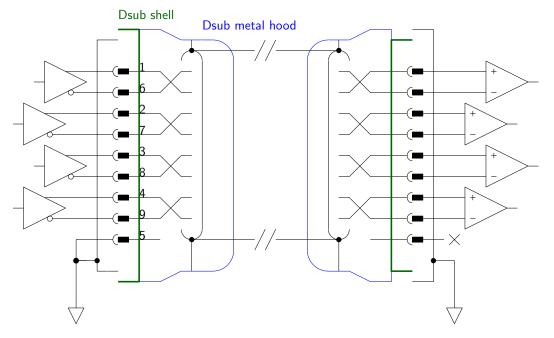
Components list (6/6): High-speed servo control filters

- Servo filters with differential input/output [iLCGT]
 - ► Laser frequency stabilization (NPRO piezo, wideband EOM, ...)
 - Laser intensity stabilization (LD current, EOAM)
 - Beamsplitter control for coherent addition in MOPA
 - PLL locking between fundamental and green lasers
- Feed-around summing amplifier with differential input/output [iLCGT]
- RMS threshold detector with digital interface [iLCGT]

DC power supply: overview


- $\pm 24 \text{ V}$ bipolar DC power supply [Kikusui PAN35-30A]
- DC 24 V distributors
- 24-to-18 V series regulators [LM7818/7918]
- 24-to-15 V series regulators [LM7815/7915]
- 180 V (TBD) DC power supply for PD bias, piezo actuator, coil driver, electrostatic actuator, . . .

DC power supply: connectors and cables


Special care (mainly ground loop management) is required to reduce AC line noise.

Unshielded 3-wire cable with D-sub 3W3 connector

Policy on AF signal transfer

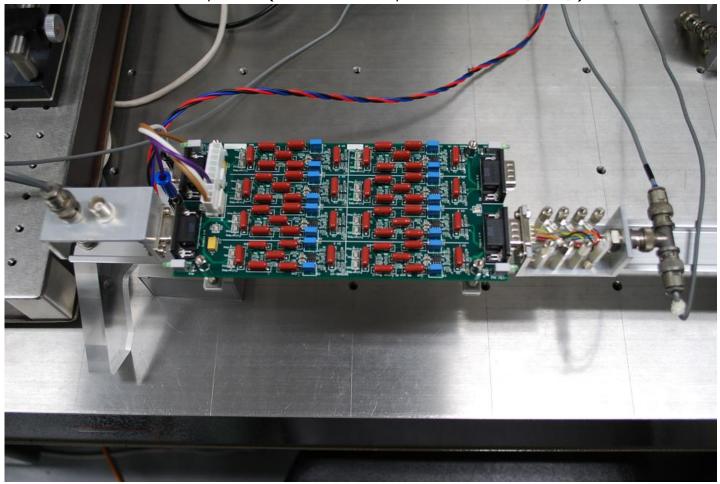
Do not transfer signals between modules with single-ended cable! Use STP (shielded twist pair) lines.

STP cable with D-sub connector

- grounded at both end via receptacle shells

optional shield isolation adapter are used to avoid ground loops along STP shield.

Chassis form for circuits: 19-inch cabinet and NIM crates/modules


- 19-inch cabinets will be used for almost all the circuits.
 - ▶ Operation under $\pm 24 \, \text{V}$ or $\pm 18 \, \text{V}$ DC power supply.
 - Take care for passive air flow cooling.
 Do not use cooling fans in analog rack!
- Use of NIM (Nuclear Instrumentation Module) will be allowed.
 - Specification document: DOE/ER-0547T at http://www.osti.gov/
 - lacktriangle Vertical PCB arrangement ightarrow effective air cooling
 - ▶ Custom crates which do not have AC 100 V transformer will be introduced. This crates provide DC ± 24 V and ± 12 V supply to the module via backplane connector.

Schedule

2011 20	012	2013	2014
7890ND1	234567890N	D 1 2 3 4 5 6 7 8 9 C	ND123456
Evaluation of DC power sup	plies		
Design of Photo Detecto	rs		
Design of RF system			
Fabr <mark>ication (</mark>	PDs)		
Fab <mark>rication (</mark>	(RF)		
	on optical bench		
RF Modulators	Tests on optical ber	nch	
Design	n and Fabrication of	<mark>filt</mark> ers/drivers	
	Inst. of power supp	lie <mark>s,</mark> signal transfer sys	stem
	Inst. of PD	and EOM drivers	
		Vacuum (First tur	
	Va	cuum (Second tunnel)	
	Va	acuum (Center room)	
	Vacuum (E	nd rooms)	
		Vacuum (MC)	
		Laser and MC installat	tion
		X arm con	nmissioning
		Y ar	m commissioning
			FPMI commis

First article test

Example of AA/AI (anti-alias/anti-imaging) filter:

Fully-differential low-pass filter, 8 channels per a board

Risk management

- AC 60 Hz line noise
 - \rightarrow policy compliance for AC transformer, AC motor and grounding treatment
- RF cross-talk noise
 - → design policy for cabling and routing on circuit board
- Acoustic coupling via capacitors, cables and oscillator crystals
 - → policy for component selection
- The data cannot be analyzed without the configuration state of analog electronics.
 - → SVN Change-log management