Rigid-Body Models of the Vibration Isolation Systems in Mathematica

F2F Meeting, Aug. 4th, 2011 ICRR M2, Takanori Sekiguchi

Rigid-Body Models in Mathematica

- Inspired by Mark Barton's suspension models <u>http://www.ligo.caltech.edu/~e2e/SUSmodels/</u>
- In the model,
 - A wire works as a mass-less spring.
 - Bodies are connected by elastic elements (wires and springs) with each other.
 - It does not take into account the elasticity inside the body.
 - It is possible to introduce different kinds of loss factors (structure damping, viscous damping).

Calculation Sequence

- Calculate the potential energy, kinetic energy, and damping energy of the system. $E_{\text{Pot}}(x), E_{\text{Kin}}(x, \dot{x}), E_{\text{Damp}}(\dot{x})$
- Find the local minimum of the potential to know the equilibrium point of the system. $\partial E_{\text{Pot}}|_{-0}$

$$\frac{\partial L_{\text{Pot}}}{\partial x}\Big|_{x=x_{\text{eq}}} = 0$$

• Linearize the system to obtain the mass matrix, the stiffness matrix and damping coefficient matrix

$$\frac{\partial E_{\text{Kin}}}{\partial \dot{x}_i \partial \dot{x}_j}\Big|_{x=x_{\text{eq}}} = M_{ij} \qquad \frac{\partial E_{\text{Pot}}}{\partial x_i \partial x_j}\Big|_{x=x_{\text{eq}}} = K_{ij} \qquad \frac{\partial E_{\text{Damp}}}{\partial \dot{x}_i \partial \dot{x}_j}\Big|_{x=x_{\text{eq}}} = G_{ij}$$

• From the linearized EoMs, calculate various transfer functions in a frequency domain.

$$\mathbf{M}\ddot{\mathbf{x}} + \mathbf{G}\dot{\mathbf{x}} + \mathbf{K}\mathbf{x} = 0$$

More Detail: JGW-T1100416

Output

 Transfer functions of the system (Frequency response of the system)

 Eigen modes of the system (Graphic tells us which sort of motion we expect and how to counteract it)

• State-space matrices for time-domain simulation

Validation of the Models

Comparison with other models: MATLAB-base models by E. Majorana

- We obtain same results (with different calculation methods).
- In future, we will check the model by prototype experiments.

Example of Simulation Results

- Eddy current damping for the type-A vibration isolation systems
- Consideration about the geometry of type-B payload

6

Example of Simulation Results

- Eddy current damping for the type-A vibration isolation systems
- Consideration about the geometry of type-B payload

7

- Torsion mode damping is indispensable for easy lock-acquisition.
- We employ eddy current damping at the top of the chain.

Torsion Mode Damping

• Torsion modes are damped < 5 min.

- Damping coefficient should be ~3 kgm²/rad
- We will need ~100 magnets on the damper. (The number should be determined experimentally.)

Effect of Eddy Current Damping in Other Modes

- The magnets also damp the horizontal/vertical modes of the suspension system.
- This may reduce the RMS amplitude of the seismic noise of TM.

Study of Longitudinal Modes

 Seismic noise induced motion of TM, with/without eddy current damping

• Not so effective (we need active damping for them.)

Example of Simulation Results

- Eddy current damping for the type-A vibration isolation systems
- Consideration about the geometry of type-B payload

Type-B Vibration Isolation System

Payload Design for Recycling Mirrors

- The folding beam passes just next to the mirrors.
- Concentric recoil masses may disturb the beam
 → Coaxial recoil masses initially considered necessary

Payload Design for Recycling Mirrors

• Compare 3 kinds of designs

About Ver. 1

- Pitch and vertical modes are coupled.
- Horizontal \rightarrow Vertical coupling is large.

About Ver. 2

- Horizontal and yaw modes are coupled.
- Transversal \rightarrow yaw coupling is large.

About Ver. 3

- The most symmetric design.
- Coupling between different degrees of freedom only in proportion to asymmetries

- As expected, ver. 3 (concentric) is the best solution.
- Other geometries will make the control very complicated.

Possibility of Concentric Solution

- Looking into the optical parameters more carefully, we find a small space (~2.1 cm) between PR2 and the folding beam.
- A concentric recoil mass will be allowed, if it has small thickness in its side.

• We developed tight concentric geometry, despite technical difficulties with constrained space.

Future Works

What I have done:

- Investigate the effect of eddy current damping in type-A systems
- Design about type-B payload
- Angular fluctuation of the mirrors due to seismic motions (this issue will be discussed by Y. Michimura)

Future works:

- Investigate the effect of eddy current damping in type-B systems
- Study on active controls (local damping)
- •