LCGT F2F August 3-5, 2011

EM Counterpart Search for GW events

Nobuyuki Kawai Department of Physics, Tokyo Tech

Outline

- Gamma-ray bursts: brief review
- Lessons for counterpart search
 - Example of follow-up observations
 - Localization accuracy and delay
- Short GRB properties and GW prediction
- Proposed strategy

Why talk about GRB?

• "Short GRB" is the prime candidate for EM counterpart of promised GW source (NS merger)

- Lessons from the history of GRB research
 - Cosmic source with poor localization
 - First detection (~1967, published in 1973)
 - First identification of counterpart (1997)

Brief review of GRBs (~1967–1997)

- Discovered in 60's, distance unknown for 30 years
- keV—GeV range (typ. hundreds of keV)
- Dominate the sky in X-ray and gamma-ray
- One GRB per day in the entire sky
- Isotropic distribution in the sky
- Not uniform in space: deficit of dim bursts
- Variety of light curves, short and long classes

Brief review of GRBs (1997~)

- Often associated with afterglow in X, optical, ...
- Associated with distant galaxies (z~1 or larger)
- Fireball model favored
- Evidence for collimated outflow
- Long GRBs occur in star forming galaxies
- Some long GRBs associated with supernova
- Isotropic distribution in the sky
- Not uniform in space: deficit of dim bursts

Fireball scenario of GRBs

Paczynski, Meszaros, Rees, Sari, Piran, ...

Piran 2003

GRB

- Classification: long vs. short
- Identification of GRBs
 - Early days -- no success
 - Modulation collimator, aspect ratio: degree, and slow
 - Interplanetary network: arcmin, months
 - BACODINE: 5 degrees, fast (20 seconds),
 - Afterglow detection

- First in X-ray
 - brightest source in the sky: easy to find
 - Imaging available: arcmin (coded mask) ~ arcsec (focusing mirror)
- Following up in optical
 - Usually faint, >20 mag at
 1 day
 - » No catalog (maybe SDSS)
 - about Half obscured in optical (IR?)
 - could be bright at very early phase (<1 minof GRB)

Example of follow-up observations

- GRB 970228
 - GRBM \rightarrow WFC –(human) \rightarrow MECS (X-ray telescope) fading source

 \rightarrow Optical telescope – fading source

- GRB 990123
 - BATSE -(BACODINE)- ROTSE
 - GRBM/WFC –(human) \rightarrow MECS (XRT) \rightarrow ROTSE inspection
- GRB 030329
 - HETE-2 \rightarrow Tokyo Tech 30cm
- GRB050509B
 - Swift BAT-XRT \rightarrow Subaru etc.
- GRB050709
 - HETE-2 Chandra Hubble
- GRB070201
 - IPN optical/LIGO
- GRB110721A
 - Fermi/LAT D=1.5 deg, 11 hours after the burst
 - Swift/XRT(D=0.4 deg) incomplete tiling
 - Candidate X-ray/optical source found 2 days later
 - Turned out to be an early-type galaxy

GRB970228: first afterglow

- Coincident detection in gamma and X rays
- X-ray position analyzed on ground
- Satellite repointed in 8 hours
- X-ray afterglow imaged by focusing instrument

8 hours

3 days

Costa et al.1997

GRB 970228: Discovery of optical transient

- Optical observation conducted based on WFC position (~ afew arcmin)
- Fading source detected
- Later Hubble observation revealed underlying extended source, probably the host of the GRB

van Paradijs et al. 1997

GRB 990123

- ROTSE responded to BATSE ~5 degree localization
- 9 mag OT found in the BeppoSAX-WFC location (~ a few arcmin)

GRB 030329 – Localization by HETE-2

- WXM 1-D localization
- SXC 1 arcmin position in ~1hour with ground analysis
- 12-13 mag optical counterpart discovered immediately

GRB 030329 Observation with Tokyo Tech 30cm

Contractions of the second sec

t_o+1.1 hr

Light curve of the optical afterglow of GRB 030329

GRB 050509B – first short GRB with arcmin localization

- Swift BAT \rightarrow X-ray afterglow by Swift XRT
- Association with an elliptical galaxy at z=0.225: likely, but not conclusive

Subaru (Kosugi, et al. 2005

GRB050709 short GRB localized by HETE-2

GRB 050709:

localization of X-ray and optical afterglow

Chandra X-ray Observatory

Hubble Space Telescope

- HETE WXM+SXC ~1 arcmin
- Chandra ~0.5 arcsec
- Hubble localized it to a dwarf starforming galaxy

z=0.160 Dwarf irregular galaxy SFR = 0.2 M_{sun}/yr

GRB070201 – short GRB from Andromeda galaxy? (780 kpc)? 120 M31 **KONUS-WIND** GRB070201 2 ms. DATA 80 M110 Mazets et al. 2008 COUNTS/2 ms. 40 0 0 TIME, MILLISECONDS -400 -200 200 400 LIGO measurements indicate that this could not have been a binary merger **PN** Error in M31 (Abbott et al. 2008) Box

 E_{y} =1.5x10⁴⁵ erg

GRB 110721A – GeV localization

- Fermi/LAT D=1.5 deg, 11 hours after the burst (large error and slow)
- Swift/XRT(D=0.4 deg) incomplete tiling
- IPN localization delay > 1 day
- Candidate X-ray/optical source found 2 days later
- Turned out to be an early-type galaxy

Lessons

- Pre-afterglow Era (~1997)
 - IPN: arcmin position is useless if too late
 - BATSE: prompt degrees position is useful with more constraining information
- Afterglow era (1997~)
 - Quick location is the key
 - Optical astronomers do not look at error circles larger than their field of view
 - Swift XRT: even arcmin position does not give conclusive identification
 - Optical/Near infrared imaging/spectroscopy required for unambiguous identification

Recommendations

- Localization error the smaller the better
- Notification delay the shorter the better

Redshift, isotropic radiated energy, and X-ray afterglow luminosity of GRBs (arrows: short GRBs)

Host galaxy and redshift of short GRBs

Optical Afterglows X-ray Afterglows

Confirmed hosts - E:SF = 2:II

Half of short GRB at z > 0.7 $\Rightarrow \langle age \rangle \leq 7$ Gyr 25

Berger et al. 2007; Berger 2009

Star formation rate and metallicity of short GRB hosts

Berger 2009

Short GRB hosts have <u>lower specific star</u> <u>formation rates</u> than long GRB hosts; they trace the general galaxy population Short GRB hosts have <u>higher</u> <u>metallicities</u> than long GRB hosts; they trace the general galaxy population

Sites of short GRBs in host galaxy

the center of their host galaxies

Short GRBs trace the light distribution of their host galaxies

Prompt emission of long and short GRBs

HE delayed onset can be seen from almost all LAT GRBs

Afterglow of short and long GRBs

Short GRB050724

Long GRBs

X-ray afterglows are similar to those of long GRBs

Suspect –Merging neutron star binary

J.H. Taylor and R.H Hulse 1993 Nobel Prize in Physics

Known neutron star binaries

Optical afterglow of GRBs

Short GRBs with measured redshifts

Short GRBs without measured redshifts

Days after burst in the observer frame

33

Kann et al. 2011

Optical afterglow of SGRB at z=1 and at 100 Mpc

34

Kann et al. 2011

Beamed emission. A relativistic jet with a Lorentz factor γ and an opening angle θ moves forward until its Lorentz factor $\gamma = \theta^{-1}$. Then it expand sideways rapidly, resulting in a "jet break" in the light curve. A schematic light curve is depicted at the top right.

Orphan afterglow for off-axis GRBs

Short GRB

- Occur in every type of galaxies
 - Traces star density
- Fermi LAT observation of GRB 090510:
 - high Lorentz factor probably strong collimation
- Neutron star merger scenario favored, but not conclusive
 - Final word only given by GW detection
- If collimated (likely), there should be many off-axis events.
 - Orphan afterglow
 - GW events relatively close-by \rightarrow bright orphan afterglow
 - \rightarrow follow up to GW trigger (large error box)
 - \rightarrow continuous monitor of large sky region for short transients

Is neutron star merger detactable as a short GRB?

- GW telescope localization $\approx 10 \text{ deg}$
 - Extremely difficult to find optical counterpart
 - Error circle too large for "normal" telescopes
 - however, $z < 0.015 \rightarrow$ much closer than usual GRBs

→need different strategy for counterpart search

- (1) Cover the large error circle ($\geq 10 \text{ deg}$)
- (2) Continuous monitor of large sky
 - Find temporary coincidence with GW event
 - Search for orphan afterglow

Counterpart search strategy

Steps of localization and identification of GW events

Akeno MITSuME 50 cm Telescope

50 cm autonomous robotic telescope at Akeno

