

Multi-Messenger Observation using LCGT

(Case study: LCGT--Super K connection)

2011年8月5日金曜日

 ∞

 $\rightarrow \kappa$

iLCGT : 1 month observation is planned in 2014.

 ∞

 ∞

- bLCGT : long duration observation is planned in 2017~
- Both LCGTs will try to make 1st detection of gravitational waves.
- … Even only LCGT is in operation.

GW Sources : Supernovae

Betelgeuse -- Red supergiant star

Distance : 196 pc

- ho Mass : 20 M $_{\odot}$
- Besides GW, neutrino and EM wave will be radiated.

Betelgeuse

Both GW and neutrino emission will occur within 20[s] after the core bounce. ~hours later EM emission will occur.

Figure 4-5: Relative arrival time of various emissions from core-collapse supernovae, as a function of time relative to peak gravitational emissions.

GW+Neutrino from Supernova

In case of SN1987A, ~10-50 MeV neutrinos were detected in < 20[s] time window</p>

- Simulation shows GW is produced at the core bounce and last a few [ms] to 100 [ms].
- Coordinated neutrino and GW search will improve detection.

tight time window, reduced FAR

NACJ Coordinated Neutrino + GW Observation

SNEWS (SuperNova Early Warning System)

Send alert within ~minutes

- False alert rate is < 1 per century</p>
- Detection threshold is high
- Another way is to perform GW-neutrino coincidence analysis. Since coincidence analysis reduces false alarm rate, we can set low threshold for both GW and neutrino search.
- From the observation of neutrinos from SN1987A and various simulations, the time window of the coincidence will be at most 20 seconds, which is shorter than GRB triggered search (180[s])

Taking into account of all neutrino flavor, Super K will detect ~10000 events in 20 [s] when a supernova occurs at 10kpc.

We did not apply any cut in the entire analysis.

Number of events from SN at 10kpc as energy

Ikeda et al. 2007

Number of events as a function of the distance of a supernova.

Can detect 1 event from a supernova at Andromeda.

Lower threshold extends the detectable distance to supernova.

SK background rate depends on a energy threshold.

Energy threshold-Distance plot & Energy threshold-Event rate plot

-0000

We consider GW search triggered by neutrino.

Chance coincidence probability is

$$P \approx Np_{v}$$

$$p_{v} = 1 - [1 + (R_{v} \times t)] \exp(-R_{v} \times t)$$

$$N = R_{GW} \times T$$

- R_{v} : Event rate of neutrinos per seconds
- R_{GW} : Event rate of GWs per seconds
- *T* : Total live time
- *t* : coincidence time window

Chance Coincidence Probability

Taking 20[s] for time window, (GW rate, Neutrino rate) =(0.1,0.5), (0.1,1),(0.5,0.5) per day can reach 10⁻⁶.

LIGO burst upper limit

Sine Gaussian

- Upper limit of LIGO burst search with injection of Sine Gaussian signals.
- For SG235Q9, h_{rss}=2x10⁻²² corresponding to 1 event/day, h_{rss}=4x10⁻²²a corresponding to 0.1 event/day
- For aLIGO, very roughly h_{rss}=10⁻²² corresponding to 0.1 event/day ----

GW energy vs Distance

 ∞

hrss vs fc on bLCGT

If bLCGT reaches h_{rss}=10⁻²² at 0.1 event/day and SK 1 event/day, CCP satisfy 10⁻⁶.

h_c vs f_c on bLCGT

hrss vs fc on iLCGT

 \overline{x}

GW+Neutrino from CBC

In case of compact binary coalescence : in progress.

Compact Binary Coalescence

Sekiguchi et al. (2011)

The coincidence between GW and Neutrino relaxes detection threshold

GW: by relaxing the rate threshold from 0.1/day to1/day, the sensitivity gains ~2 times better.

Neutrino: by relaxing number threshold from 2 events in a time window to 1 event, the detectable distance gains ~41% better.

More sophisticated estimation, like applying various cut to SK data, should give more accurate information.

This is just a kick-off study. I'd propose to have a special working group for studying coordinated LCGT-SK search.

Energy threshold vs Distance

 ∞

Distance@neutrino event count=1

