

Multi-Messenger Observation using LCGT

(Case study: LCGT--Super K connection)

National Astronomical Observatory of Japan

GW Observation using LCGT

- iLCGT: 1 month observation is planned in 2014.
- bLCGT : long duration observation is planned in 2017~
- Both LCGTs will try to make 1st detection of gravitational waves.
- ... Even only LCGT is in operation.

GW Sources: Supernovae

Core-Collapse SuperNova is one of promising sources.

Betelgeuse -- Red supergiant star

Distance : 196 pc

● Mass : 20 M_☉

Betelgeuse

Besides GW, neutrino and EM wave will be radiated.

Both GW and neutrino emission will occur within 20[s] after the core bounce. ~hours later EM emission will occur.

Figure 4-5: Relative arrival time of various emissions from core-collapse supernovae,

GW+Neutrino from Supernova

- In case of SN1987A, ~10-50 MeV neutrinos were detected in < 20[s] time window</p>
- Simulation shows GW is produced at the core bounce and last a few [ms] to 100 [ms].
- Coordinated neutrino and GW search will improve detection.
 - tight time window, reduced FAR

Coordinated Neutrino + GW Observation

- SNEWS (SuperNova Early Warning System)
 - Send alert within ~minutes
 - False alert rate is < 1 per century</p>
 - Detection threshold is high

Neutrinos Super-K detecting at 10kpc

- Taking into account of all neutrino flavor, Super K will detect ~10000 events in 20 [s] when a supernova occurs at 10kpc.
- We did not apply any cut in the entire analysis.

Number of events from SN at 10kpc above the threshold

Number of events from SN at 10kpc as energy

Ikeda et al. 2007

Energy threshold vs Distance

Event number Super-K will detect

- Number of events as a function of the distance of a supernova.
- Can detect 1 event from a supernova at Andromeda.

Distant Supernova Search using Super-K

Lower threshold extends the detectable distance to supernova.

$$Eff_2 = 1 - \exp(-N) - N \exp(-N)$$
 $Eff_1 = 1 - \exp(-N)$

Background Event Rate

SK background rate depends on a energy threshold.

Background event rate vs Distance

-2000 - 2000 - 2000 - 2000

Energy threshold-Distance plot & Energy threshold-Event rate plot

Chance Coincidence Probability

-2000 - 2000 - 2000 - 2000

- We consider GW search triggered by neutrino.
- Chance coincidence probability is

$$P \approx Np_{v}$$

$$p_{v} = 1 - [1 + (R_{v} \times t)] \exp(-R_{v} \times t)$$

$$N = R_{GW} \times T$$

 R_{v} : Event rate of neutrinos per seconds

 $R_{\scriptscriptstyle GW}$: Event rate of GWs per seconds

T: Total live time

t: coincidence time window

Accidental Coincidence Probability

-2000 --2000 --2000 --2000

Taking 20[s] for time window, (GW rate, Neutrino rate) =(0.1,0.5), (0.1,1),(0.5,0.5) per day can reach 10⁻⁶.

LIGO burst upper limit

- -2000 --2000 --2000 --2000
- Upper limit of LIGO burst search with injection of Sine Gaussian signals.
- **●** For SG235Q9, h_{rss}=2x10⁻²² corresponding to 1 event/day, h_{rss}=4x10⁻²²a corresponding to 0.1 event/day
- For aLIGO, very roughly h_{rss}=10⁻²² corresponding to 0.1 event/day ---

Sine Gaussian

GW energy vs Distance

Assuming isotropic GW radiation:

$$E_{GW} \approx \frac{\pi^2 c^3}{G} D^2 f^2 h_{rss}^2$$

h_{rss} vs f_c on bLCGT

If bLCGT reaches h_{rss}=10⁻²² at 0.1 event/day and SK 1 event/day, CCP satisfy 10⁻⁶.

h_c vs f_c on bLCGT

h_{rss} vs f_c on iLCGT

h_c vs f_c on iLCGT

At most SNR < 4, so lower threshold search is required.

GW+Neutrino from CBC

In case of compact binary coalescence: in progress.

Compact Binary Coalescence

Neutrino Flux

Sekiguchi et al. (2011)

Summary

- The coincidence between GW and Neutrino relaxes detection threshold
 - GW: by relaxing the rate threshold from 0.1/day to 1/day, the sensitivity gains ~2 times better.
 - Neutrino: by relaxing number threshold from 2 events in a time window to 1 event, the detectable distance gains ~41% better.
- More sophisticated estimation, like applying various cut to SK data, should give more accurate information.
- This is just a kick-off study. I'd propose to have a special working group for studying coordinated LCGT-SK search.